期刊文献+

经典逻辑门与量子逻辑门之比较 被引量:5

Comparison of Classical Logic Gates with Quantum Logic Gates
下载PDF
导出
摘要 本文通过经典逻辑门与量子逻辑门之比较,论述了量子计算的特点、量子算法的巨大威力及量子逻辑门的实现问题。 In this article, we describe the differences between classical logic gates and quantum logic gates, and explain the characteristics of quantum computation, the strong power of the quantum algorithm, and the problem of the realization of quantum logic gates.
出处 《计算机工程与科学》 CSCD 2005年第11期93-95,共3页 Computer Engineering & Science
关键词 量子逻辑门 量子算法 经典逻辑门 quantum logic gate quantum algorithm classical logic gate
  • 相关文献

参考文献16

  • 1Joel Birnbaum,R Stanley Williams. Physics and the Information Revolution [J]. Physics Today, 2000 , 53: 38- 42.
  • 2R Landauer. Irreversibility and Heat Generation in the Computing Process [J]. IBM Journal Research Devlopment,1961, 5: 183-192.
  • 3Richard P Feynman. Simulating Physics with Computers[J]. Int'l J Theor Phys,1982,21:467-487.
  • 4D Deutsch. Quantum Theory: The Church-Turing Principle and Universal Quantum Computer [J]. Proc R Soc[C].1985. 97-117.
  • 5P W Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[A]. Proc of the 35th Annual IEEE Symp on Foundation of Computer Science [C]. 1994. 124-134.
  • 6L K Grover. A Fast Quantum Mechanical Algorithm for Database Search [A]. Proc of the 28th Annual ACM Symp on Theory of Computing[C]. 1996.
  • 7C A Sackett, D Kielpinski, B E King, et al. Experimental Entanglement of Four Particle [J]. Nature, 2000, 404: 256-259.
  • 8T Sleator, H Weinfurter. Realizable Universal Quantum Logic Gates [J]. Physical Review Letters, 1995, 74: 4087-4090.
  • 9C H Bennett, R Cleve, D P Divincenzo, et al. Elementary Gates for Quantum Computation [J]. Phys Rev, 1995, 52:3457-3467.
  • 10C H Bennett. Logical Reversibility of Computation [J].IBM Journal Research Development, 1973,17: 525-532.

二级参考文献17

  • 1Zhang C W,Phys Rev A,2000年
  • 2Zhang C W,Phys Rev A,2000年,61卷,062310页
  • 3Leung D,Phys Rev A,1999年,60卷,1924页
  • 4郭光灿,费曼处理器,1999年,49页
  • 5Duan L M,Phys Lett A,1998年,243卷,261页
  • 6Duan L M,Phys Rev A,1998年,57卷,2399页
  • 7Duan L M,Phys Rev A,1998年,57卷,737页
  • 8Chuang I L,Phys Rev Lett,1998年,80卷,3408页
  • 9Duan L M,Phys Rev Lett,1998年,80卷,4999页
  • 10Duan L M,Phys Rev Lett,1997年,79卷,1953页

共引文献33

同被引文献33

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2王凌,吴昊,唐芳,郑大钟,金以慧.混合量子遗传算法及其性能分析[J].控制与决策,2005,20(2):156-160. 被引量:45
  • 3谷国太.对量子计算机的探讨[J].河南工业大学学报(社会科学版),2006,2(2):117-119. 被引量:1
  • 4管致锦,秦小麟,葛自明.量子电路可逆逻辑综合的研究及进展[J].南京邮电大学学报(自然科学版),2007,27(2):24-27. 被引量:4
  • 5Alber G T,Beth M H,Hordecki P R,et al. Quantum information[ M]. 北京:世界图书出版社,2004:97 -102.
  • 6Patalia, T P Kulkarni G R. Behavioral analysis of genetic algorithm for function optimization [C] // 2010 IEEE International Conference on Computa- tional Intelligence and Computing Research(ICCIC). Coimbatore.. IEEE, 2010: 1-5.
  • 7高尚,江新姿,汤可宗.蚁群算法与遗传算法的混合算法[C]//Proceedingofthe26thChineseControlCon{erence.Zhangjiajie:IEEE,2007:701-104.
  • 8Wei Juan, Wang Ping. Optimization of fuzzy rule based on adaptive genetic algorithm and ant colony algorithm[C] // 2010 International Conference on Computational and Information Sciences. Chendu IEEE, 2010.. 359-362.
  • 9Shill P C, Amin M F, Akhand M A H, et al. Op- timization of interval type-2 fuzzy logic controller using quantum genetic algorithms[C]///Internation-al Conference of Fuzzy Systems. Brisbane, QLD.. IEEE, 2012.. 1-8.
  • 10Bennett CH, Brassard G, Crepeau C, et al. Tele- porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen ehannels[J]. Physical Review Letters, 1993,70(13): 1895-1899.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部