期刊文献+

Banach空间中方向偏导数

Directional partial derivative in Banach spaces
下载PDF
导出
摘要 应用Banach空间中的广义Schauder基,建立了Banach空间中方向偏导数理论,给出了几个重要定理和泛函极小化序列的坐标法构造. The theory of directional partial derivative in Banach spaces was established. Some new concepts, important theorems and the coordinate method of minimizing sequence were given.
出处 《浙江师范大学学报(自然科学版)》 CAS 2005年第4期361-366,共6页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省教育厅科研项目(20020868)
关键词 广义Schauder基 方向偏导数 Frèchet微分 极小化序列 坐标法 generalized Schauder bases directional partial derivative Frèchet differentiation minimizing sequence coordinate method
  • 相关文献

参考文献2

二级参考文献16

  • 1Banach, S, Theorie des operations lineaires [M], 1932.
  • 2Enflo, P, A counterexample to the approximation property in Banach space [J], Acta Math, 130(1973), 309-317.
  • 3Singer, I, Bases in Banach space I, II [M], Berlin Heideberg New York, Springer, 1970.
  • 4Singer, I, The therory of the best approximation and functional analysis [M], 1974.
  • 5Lindenstrauss, J & Zafriri, L T, Classical Banach Space I, II [M], Springer-Verlag,1977.
  • 6Enflo, P and Rosenthal, H P, Some results concerning Lp^(v)-space [J], J Func Anal,14(1973), 325-348.
  • 7Weidmann, J, Linear operators in Hilbert space [M], New York Heideberg Berlin, Springer-Verlag, 1980.
  • 8Browder, F E & Petryshyn, W V, Approximation methods and generalized topological degree for nonlinear mapping in Banach space [J], J Func Anal, 3(1969), 217-245.
  • 9Petryshyn, W V, On the approximation-solvability of equations involving A-proper and pseudo A-proper mappings [J], Bull Amer Math Soc, 81(1975), 223-312.
  • 10Lloyd, N G, Degree theory [M], Camb Univ Press, 1978.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部