期刊文献+

δ函数Legendre非线性逼近的收敛性 被引量:3

Convergence of the Legendre nonlinear approximations to the Dirac function
下载PDF
导出
摘要 讨论了利用Legendre多项式母函数的非线性逼近,证明了当这类非线性逼近应用于Diracδ函数时逼近是收敛的,且导出了逼近误差. The nonlinear approximations based on the generating functions of the Legendre polynomials were studied. It was proved that such nonlinear approximations to the Dirac delta function on [-1,1] were convergent. Moreover, the approximate errors was examined.
作者 潘云兰
出处 《浙江师范大学学报(自然科学版)》 CAS 2005年第4期367-371,共5页 Journal of Zhejiang Normal University:Natural Sciences
基金 浙江省留学回国基金会留学回国人员科研启动基金 浙江师范大学数学重点专业基金
关键词 非线性逼近 母函数方法 Diracδ函数 LEGENDRE多项式 nonlinear approximation generating function method Dirac delta function Legendre polynomial
  • 相关文献

参考文献10

  • 1Brezinski C. Padé-Type Approximation and General Orthogonal Polynomials,ISNM 50[M]. Basel:Birkhaeuser Verlag,1980.
  • 2Charron R J ,Small R D. On weighting schemes associated with the generating function method[A]. Chui C K,Schumaker L L,Ward J D. Approximation Theory VI(Vol. 1 )[C]. New York: Academic Press Inc, 1989 : 133- 136.
  • 3Chisholm J S R,Common A K. Generalizations of Padé approximation for Chebyshev series[A]. Butzer P L,Fehér F,Christoffel E B.The Influence of His Work on Mathematics and the Physical Sciences[C]. Basel:Birkhaeuser Verlag, 1979.
  • 4Garibotti C R,Grinstein F F. A summation procedure for expansions in orthogonal polynomials[J]. Rev Brasileira Fis,1977, 7(3):557-567.
  • 5Small R D. The generating function method of nonlinear approximation[J]. SIAM J Num Anal,1988,25(1) :235-244.
  • 6Zhu W,Huang Y H,Kouri D J,et al. Orthogonal polynomial expansion of the spectral density operator and the calculation of bound state energies and eigenfunctions[J]. Chem Phys Lett, 1994,217(1) :73-79.
  • 7Kouri D J ,Zhu W, Parker G A,et al. Acceleration of convergence in the polynomial-expanded spectral density approach to bound and resonance state calculations[J]. Chem Phys Lett, 1995,238(6) :395-403.
  • 8Parker G A ,Zhu W, Huang Y H, et al. Matrix pseudo-spectroscopy:iterative calculation of matrix eigenvalues and eigenvectors of large matrices using a polynomial expansion of the Dirac delta function[J]. Comput Phys Commun, 1996,96(1 ):27-35.
  • 9Hildebrand F B. Introduction to Numerical Analysis[M]. New York:Dover Publications Inc, 1987.
  • 10Szёgo G. Orthogonal Polynomials[J]. Providence:Colloquium Publications-American Mathematical Society,1959.

同被引文献14

  • 1潘云兰.δ函数的导函数的Legendre非线性逼近[J].浙江师范大学学报(自然科学版),2006,29(4):373-377. 被引量:1
  • 2潘云兰,杨文善.符号函数的Legendre非线性逼近[J].高等学校计算数学学报,2007,29(2):166-175. 被引量:1
  • 3Brezinski C.Padé-Type Approximation and General Orthogonal Polynomials,ISNM 50[M].Basel:Birkh(a)user Verlag,1980.
  • 4Charron R J,Small R D.On weighting schemes associated with the generating function method[C]//Chui C K,Schumaker L L,Ward J D.Approximation Theory Ⅵ:Vol.1.New York:Academic Press Inc,1989:133-136.
  • 5Chisholm J S R,Common A K.Generalizations of Padé approximation for Chebyshev series[C]//Butzer P L,Fehér F,Christoffel E B.The Influence of His Work on Mathematics and the Physical Sciences.Basel:Birkh(a)user Verlag,1979.
  • 6Garibotti C R,Grinstein F F.A summation procedure for expansions in orthogonal polynomials[J].Rev Brasileira Fis,1977,7 (3):557-567.
  • 7Small R D.The generating function method of nonlinear approximation[J].SIAM J Num Anal,1988,25(1):235-244.
  • 8Hildebrand F B.Introduction to Numerical Analysis[M].New York:Dover Publications Inc,1987.
  • 9曹志远,邹贵平,唐寿高.时变动力学的Legendre级数解[J].固体力学学报,2000,21(2):102-108. 被引量:8
  • 10范庆忠,王雨苗.用勒让德多项式逼近结构的瞬态响应[J].河海大学学报(自然科学版),2002,30(2):26-29. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部