摘要
研究了一类具有边界摄动的非线性非局部反应扩散方程奇摄动Robin初始边值问题.在适当的条件下,首先求出了原问题的外部解,然后利用伸长变量、合成展开法和幂级数展开理论构造出解的初始层项,并由此得到解的形式渐近展开式.最后利用微分不等式理论,讨论了问题解的渐近性态并导出了几个有关的不等式,讨论了原问题解的存在唯一性和解的一致有效的渐近估计式.
A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problens for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solution of the original problem was obtained. Secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer was constructed. Finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems was studied, and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation were discussed.
出处
《应用数学和力学》
CSCD
北大核心
2005年第12期1507-1511,共5页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(9011101110471039)
上海市教育委员会E_研究院建设计划资助项目(N.E03004)
浙江省自然科学基金资助项目(Y604127)
关键词
非线性
反应扩散
奇摄动
nonlinear
resction diffusion
singular perturbation