期刊文献+

给定曲率和挠率为常数的空间曲线方程 被引量:10

Equations of Space Curves with Constant Curvature and Torsion
下载PDF
导出
摘要 通过解向量微分方程组的特解的方法,给出了曲率函数和挠率函数为常数的空间曲线的方程,并通过分析说明具有该特征的曲线就是圆柱螺线,在此基础上进一步探讨了曲率和挠率为非常数但它们的比值为常数的空间曲线的方程. Curvature and torsion are two internal parameters of a space curve. From the basic theorems of space curves, it is known theoretically that the shape and function of a space curve can be uniquely determined if its curvature function and torsion function are given. Practically, however, it is very hard to do so because of the difficulties in the solution of a set of differential equations. With the method for the solution of vector differential equations, the equation of a space curve with constant curvature and torsion is given. Through analysis, it is pointed out that such a curve is of circular helix. Based on this, equations of space curves with variable curvature and torsion but constant ratio are studied.
作者 闫焱 惠存阳
出处 《西安文理学院学报(自然科学版)》 2005年第4期24-26,共3页 Journal of Xi’an University(Natural Science Edition)
关键词 曲率 挠率 空间曲线 curvature torsion space curve
  • 相关文献

同被引文献23

  • 1傅朝金.空间曲线的曲率和挠率[J].高等函授学报(自然科学版),2003,16(5):13-14. 被引量:10
  • 2闫焱.关于圆柱螺线性质的一些探讨[J].西安文理学院学报(自然科学版),2006,9(4):45-47. 被引量:12
  • 3吴大任.微分几何讲义[M].北京:人民教育出版社,1982..
  • 4吕林根,徐子道.解析几何(第三版)[M].高等教育出版社,2008.
  • 5Auslander L, Mackenzie R E. Introduction to Differentiable Manifolds[M]. New York: McGraw-Hill, 1963.
  • 6Hicks N.J, Notes on Differential Geometry,D.Van Noslrand, Princeton, 1965.
  • 7Kobayashi S., Nomizu K. Foundations of Differential Geometry,vols. Ⅰ and Ⅱ[M]. New York: Interscience, 1963 and1969.
  • 8Rund H. The Differential Geometry of Finsler Spaces[M]. Berlin: Springer- Verlag, 1959.
  • 9Mishchenko A.S, Solovyev YU.P, Fomenko A.T. Problems In DifferentialGeometry and Topology[M].莫斯科:Mir出版社,1985.
  • 10CarmoM.P.do.曲线和曲面的微分几何学[M].田畴,译.上海:上海科学技术出版社,1988.

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部