期刊文献+

量子点应变能的有限元分析

A Finite-element Method for Calculating Strain Distribution in Quantum Dots
下载PDF
导出
摘要  本文利用2维轴对称有限元模型,对嵌入在GaAs中的InAs量子点的应变场进行了模型化,用ANSYS软件计算了金字塔形、台形和圆顶形半导体量子点的弹性应变和应变能.讨论了弹性应变能与量子点平衡形状的关系,通过比较三种形状量子点的能量得出了量子点的稳定结构形状. The distribution of the elastic strain and elastic strain energy in the semiconductor quantum dots is calculated by using the finite element package. The elastic strain and strain energy in three shaped quantum dots are calculated, and the most stable shape of the quantum dots under the thermalequilibrium condition is deduced.
出处 《中央民族大学学报(自然科学版)》 2005年第1期84-88,共5页 Journal of Minzu University of China(Natural Sciences Edition)
基金 国家863项目(No.2003AA311070)
关键词 有限元 量子点 应变场 finite-element method quantum dots strain fields
  • 相关文献

参考文献5

  • 1[1]DOWNES J R, FAUX D A, O' REILEY E P. A simple method for calculating strain distribution in quantum dot Structures[J].J. Appl. Phys. ,1997, 81: 6700- 2.
  • 2[2]BENABBAS T,ANDROUSS Y, LEFEBVRE A. A finite-element study of strain fields in vertically aligned InAs island in GaAs [J] .J. Appl. Phys., 1999, 86:1945-50.
  • 3[3]GRUNDMANN M, STIER O, BIMBERG D. InAs/GaAs pyramidal quantum dots: stain distribution, optical phonons electronic structure[J].Phys. Rev., 1995,B52: 11969-81.
  • 4[4]MURALIDHARAN G. strains in InAs quantum dots embedded in GaAs : a finite element study[J].Japan.J. Appl. Phys.,2000, 37(7A): part2 L658-660.
  • 5[5]S S QUEK, G R LIU. Effects of elastic anisotropy on the self-organized ordering of quantum dot superlattiee [J].Nanotechnology., 2003,14:752-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部