期刊文献+

基于核方法的数据描述及其在企业关系评价中的应用

Study on Data Description based on Kernel Method and Its Application
原文传递
导出
摘要 数据描述又称为一类分类方法,用于描述现有数据的分布特征,以研究待测试数据是否与该分布相吻合.首先简要叙述了基于核方法的数据描述原理,指出:选择适当的核函数以及与之对应的参数,数据描述可应用于模式聚类中,并且这种聚类方法具有边界紧致、易剔除噪声的优势.针对基于数据描述的聚类方法在确定类别数目和具体样本类别归属上所存在的问题,提出了基于搜索的解决方法,理论分析和实例计算都验证了该方法的可行性.最后将该聚类算法应用到企业关系评价中,取得了较为合理的结果. Data description, or one-class classification, is used to distinguish between a set of target objects and all other possible objects. On the basis of introducing the principle of data description based on kernel briefly, the paper points out that the data description can be used in pattern clustering if the kernel function and its parameters are choosed properly. The new clustering method has the advantage of tight boundary, so the disturbance of noise data is easy to elominate. Aiming at the difficulty of determing the number of clustering and which cluster each sample belong to in the new clustering method, the paper proposed a solution through searching, which has been proved theoretically. In the end of paper, the new clustering method is used in relation evaluation of enterprise. The result show that the new method is reasonable.
作者 肖健华
出处 《数学的实践与认识》 CSCD 北大核心 2005年第11期83-91,共9页 Mathematics in Practice and Theory
基金 广东省自然科学基金项目资助(04011765) 国家自然科学基金项目资助(70471074)
关键词 数据描述 核方法 聚类 关系评价 data description kernel methods clustering relation evalution
  • 相关文献

参考文献10

  • 1Muller K R, Mika S, Ratsch G, et al. An introduction to kernel-Based learning algorithms[J]. IEEE Trans on Neural Networks, 2001, 12(2):181-201.
  • 2Tax D, Duin R. Combining One-class classifiers[J]. In:J. Kittler, F. Roli (eds.), multiple classifier systems,proceedings second international workshop MCS 2001 (Cambridge, UK, July) lecture notes in computer science [M]. vol. 2096, Springer Verlag, Berlin, 2001, 299-308.
  • 3Tax D, Duin R. Data domain description using support vectors[J]. Proc European Symposium Artificial Neural Networks 1999. 251-256.
  • 4Tarassenko L, Hayton P, Brady M. Novelty detection for the identification of masses in mammograms[J]. In Proc of the Fourth International IEE Conference on Artificial Neural Networks, 1995, 409: 442-447.
  • 5Knorr E M, Raymond T. Ng. Algorithms for mining distance-based outliers in large datasets[J]. Proc VLDB,1998. 392-403.
  • 6Moya M, Koch M, Hostetler L. One-class classifier networks for target recognition applications [J]. In Proceedings World Congress on Neural Networks, 1993. 797-801.
  • 7Vapnik V. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995.
  • 8Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 9Bellman R E. Adaptive Control Processes: A Guided Tour[M]. Princeton University Press, Princeton, 1961.
  • 10肖健华.[D].华中科技大学,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部