期刊文献+

一种基于维层次聚集树的Cube增量更新算法 被引量:2

Novel Incremental Update Algorithm of the Cube Based on Dimension Hierarchy Aggregate Tree
下载PDF
导出
摘要 提出利用Cube中的维层次聚集树(d im ens ion h ierarchy aggregate tree,简称DHA_T ree)来对聚集Cube进行增量更新维护,在维层次聚集Cube中进行数据插入和删除等数据更新时,充分利用维层次聚集树中的维层次前缀,由下向上用更新前后的差值对受到更新结点影响的所有祖先结点进行增量更新.在插入新维数据时,在不需要重新构建聚集Cube就可以对聚集Cube进行增量更新,从而减少了Cube的更新时间.对基于维层次聚集树的聚集Cube与传统Cube进行了算法性能分析和比较,结果表明本文所提出的聚集Cube的增量更新算法性能最佳. The paper proposes a novel incremental update algorithm to update the aggregate cube with the dimension hierarchy aggregate tree on the cube, By using the hierarchical prefix of the dimension hierarchy aggregate tree, the aggregate cube can incrementally update the all affected ancestor notes while updating the data cell in it, The aggregate cube can also incrementally update without being recreated while being added new dimension data in it. As a result, this algorithm can greatly reduce the update time, We have compared the algorithms of the aggregate cube based on dimension hierarchy aggregate tree with the existed other ones such as DDC(dynamic data cube) , The results show that the algorithms of the aggregate cube proposed in this paper are more efficient than other existed ones.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第12期2126-2130,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60473012)资助 国家"十五"重大科技攻关项目(2003BA614A)资助 江苏省"十五"高科技项目(BG2004034)资助.
关键词 维层次聚集树 增量更新 维层次前缀 多维联机分析处理 dimension hierarchy aggregate tree incremental update hierarchical prefix multidimensional on-line analysis process (MOLAP)
  • 相关文献

参考文献11

  • 1Codd E F. Providing OLAP(on-line analytical processing) to user-analysts:an IT mandate[R]. Technical Report. E F Codd and Associates, 1993.
  • 2Zhao Y H, Deshpande P M, Naughton J F. An array-based algorithm for simultaneous multidimensional aggregates [J].ACM SIGMOD Record, 1997,26 (2):159-170.
  • 3Mumick I S, Quass D, Mumick B S. Maintenance of data cubes and summary tables in a warehouse [J]. ACM SIGMOD Record,1997,26(2): 100-111.
  • 4Ho C, Agrawal R, Megiddo N, Srikant R. Range queries in OLAP data cubes[J]. ACM SIGMOD Record, 1997,26 (2):73-88.
  • 5Geffner S, Agrawal D, Abbadi A E1, Smith T. Relative prefix sums: An efficient approach for querying dynamic OLAP data cubes[A]. In:Kitsuregawa M, ed. Proceedings of the 15th International Conference on Data Engineering[C]. New Orleans:IEEE Computer Society, 1999,328-335.
  • 6Geffner S, Agrawal D, Abbadi A E1. The dynamic data cubes [A]. In: Zaniolo C, ed. Proceedings of 7th International Conference on Extending Database Technology [C]. Heidelberg:Springer, 2000, 237-253.
  • 7Liang W, Wang H, Orlowska M E. Range queries in dynamic OLAP data cubes[J]. Data & Knowledge Engineering , 2000,34(1):21-38.
  • 8Riedewald M, Agrawal D, Abbadi A El. Fiexible data cubes for online aggregation[A]. In: Bussche J V, ed. Proceedings of the 8th International Conference on Database Theory [C]. Heidelberg:Springer, 2001, 159-173.
  • 9冯玉,王珊.Compressed Data Cube for Approximate OLAP Query Processing[J].Journal of Computer Science & Technology,2002,17(5):625-635. 被引量:3
  • 10Wang W, Lu H J, Feng J L et al. Condensed cube: an effective approach to reducing data cube size[A]. In: Jose S, Agrawal C R, Dittrich K, eds. Proc. of the 18th International Conference on Data Engineering[C]. Los Alamitos :IEEE Computer Society Press, 2002, 155-165.

二级参考文献11

  • 1Gray J, Bosworth A, Layman A, Pirahesh H. DataCube: A relational aggragation operator generalizing Group-By,Cross-Tab, and SubTotals. In Proc. 12th ICDE, Neworleans, Louisiana, USA, 1996, pp.152-159.
  • 2Sarawagi S, Stonebraker M. Efficient organization of large multidimensional arrays, in Proc of ICDE, Houston,Texas, USA, 1994, pp.328-336.
  • 3Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2000.
  • 4The OLAP Council. The OLAP benchmark, http://www.olapcouncil.org
  • 5Barbara D, DuMouchel W, Faloutsos C et al. The New Jersey data reduction report. IEEE Data Engineering Bulletin, 1997, 20(4): 3-45.
  • 6Acharya S, Gibbons P B, Poosala V, Ramaswamy S. Join Synopses for approximate query answering. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.275-286.
  • 7Vitter J S, Wang M. Approximate computation of multidimensional aggregates of sparse data using wavelets. In SIGMOD'1999, Philadelphia, Pennsylvania, USA, 1999, pp.193-204.
  • 8Shanmugasundaram J, Fayyad U, Bradley P S. Compressed Data Cubes for OLAP Aggregate Query Approximation on Continuous Dimensions. In KDD'1999, San Diego, California, USA, 1999, pp.223-232.
  • 9Jagadish H V, Madar J, Ng R T. Semantic Compression and Pattern Extraction with Fascicles. In VLDB'1999,Edinburgh, Scotland, 1999, pp.186-198.
  • 10Babu S, Garofalakis M, Rastogi R. SPARTAN: A model-based semantic compression system for massive data tables.In SIGMOD'2001, Santa Barbara, California, USA, 2001, pp.283-294.

共引文献2

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部