摘要
以基于格心的有限体积法为基础,空间二阶精度,采用4阶Runge-Kutta,GMRES隐式方法求解基于ALE形式的Euler方程,网格单元边界处守恒量通量的计算采用了Hand方法,对NACA0012翼型绕流及运动圆球绕流等问题进行数值模拟,取得了较好的结果.GMRES方法克服了以往隐式方法大量耗费内存的弱点,达到了计算耗时短和占用内存少的统一.
Runge-Kutta and GMRES methods are used for solving the 3-D time-dependent Euler equations in an Arbitrary Lagrangian-Eulerian(ALE) framework. The algorithm is based on a cell centered, finite-volume approach, second-order accurate in space. Hanel method is used to calculate the flux of the control face. Flows around a pitching NACA0012 airfoil and a moving ball are simulated. The numerical results are satisfactory. GMRES has the advantages of taking much less memory and less computation time.
出处
《力学与实践》
CSCD
北大核心
2005年第5期25-28,共4页
Mechanics in Engineering
基金
国家自然科学基金(10476011)项目资助