期刊文献+

L egender神经网络建模及股票预测 被引量:7

Modeling and Stock Prediction Based on Legender Neural Networks
下载PDF
导出
摘要 基于多项式逼近理论,将一组Legender正交多项式做为隐含层神经元的传递函数,再以其加权和函数做为神经网络输出,从而构成一种新型的三层多输入Legender神经网络模型;采用BP学习算法,通过对历史观测样本数据的训练,调整该神经网络的权值,建立非线性时间序列辨识模型,以此预测股票价格的变化。仿真实验表明,Legender神经网络具有优良的逼近任意非线性系统的特性,且学习收敛速度很快;深发展A股预测结果为:训练次数200,最大相对误差5.41%;深证成指预测结果为:训练次数120,最大相对误差4.17%。 This paper presents a new - type three - layer multi - input Legender neural network model based on polynomial approximation theory, which applies the Legender orthogonal polynomial as transfer function of hidden layer neural cell, uses weigh sum as its output. The nonlinear identification model on the time series is proposed to predict the change of stock by introducing the BP learning algorithm, training the data of former sample and adjusting the weights of network. The simulated results show that the Legender neural network has excellent characteristics of approaching any nonlinear system, and the network convergence speed is quite high. The forecasted results of Shenzhen - Development - Bank;s A shares are : train degrees 200 and the most relative error 5.41%. The forecasted results of the composition stock index of Shenzhen securities exchange market are: train degrees 120 and the most relative error 4.17%.
出处 《计算机仿真》 CSCD 2005年第11期241-242,246,共3页 Computer Simulation
关键词 神经网络 正交多项式 时间序列 预测 股票 Neural networks Orthogonal polynomial Time series Forecast Stock
  • 相关文献

参考文献6

二级参考文献33

  • 1张铃,张钹,吴福朝.神经网络的规划学习算法[J].计算机学报,1994,17(9):669-675. 被引量:13
  • 2[10]Saint Donant J,Bhat N,Mc Avoy T J.Neural net based model predictive[J].Int J Control.1991,54(6):1453-1468.
  • 3[11]Narenda K S,Parthasarathy K.Identification and control of dynamic systems using neural network[J].IEEE Transaction on Neural Networks.1990,1(1):4-27.
  • 4[12]S W Piche. Widrow B.First-order Gradient Descent Training of Adaptive Discrete-Time Dynamic Networks[M].Stanford Univ., CA. Dept. of Electrical Engineering.
  • 5HaganMT DemuthHB BealeMH.NeuralNetworkDesign[M],机械工业[M].北京:出版社,2002..
  • 6K Funahashi. On the approximate realization of continuous mapping by neural networks. Neural Networks, 1989, 2(3): 183~ 192
  • 7K Homik, M Stinchcombe, H White. Multi-layer feed forward networks are universal approximators. Neural Networks, 1989, 2(3): 359~366
  • 8K Hornik, M Stinchcombe, H White. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward net-works. Neural Networks, 1990, 3(5): 551~560
  • 9Raymond ST Lee, James NK Liu. NORN finance forecaster-A neural oscillatory-based recurrent network for finance prediction.IJCAI2001. San Francisco, USA: Morgan Kaufmann Publishers Inc, 2001. 783~788
  • 10张铃.人工神经网络的学习方法.见:陆汝钤主编.神经网络及其应用.北京:清华大学出版社,2003(Zhang Ling. Learning methods of artificial neural networks. In:Lu Ruqian ed. Neural Networks and Applications(in Chinese).Beijing: Tsinghua University Press, 2003)

共引文献34

同被引文献40

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部