期刊文献+

双目遥感凝视系统中运动小目标的快速自动检测

High-speed auto-detection of moving small targets in remote sensing staring binocular imaging system
下载PDF
导出
摘要 从双目遥感凝视系统的视场重叠区进入系统的信息量大于通过非重叠区的信息量,根据这一特征建立了一种新的运动小目标双目并行快速实时自动检测算法。首先采用差分向量无穷范数算法对原始图像序列做预处理,去掉大量低频噪音和背景,然后采用光流场法对运动小目标进行分割,最后用所提出的空间时间并行快速判定算法对分割的可疑运动小目标进行判定。实验结果表明:由于识别判定算法的空间时间是并行处理的,所以识别判定的平均速度比单目视觉系统提高了50%;在图像信噪比不小于5dB的情况下,准确判定识别的概率为97%。 According to the feature of remote sensing staring binocular imaging system, the information quantity passed through the overlapped fidd of view is larger than that passed through the non-overlapped fidd of view, a new paralld high-speed automatic detecting algorithm of moving small targets is established. The algorithm firstly used the Infinite Norms of the difference vectors of the processed images as a preprocessing algorithm to get rid of most of low frequency noise points and background, then used Optic Flow to segment the moving small targets, and finally used the novel space-time parallel high-speed determining method proposed to determine whether the doubtful moving small target was a true target or not. The experiments results prove that the average determining speed of the space-time parallel processing determining method is improved 50 % than that of the monocular imaging system, in the SNR of processed images is no less than 5 dB, the correct determining probability is 97 %.
出处 《光学技术》 EI CAS CSCD 北大核心 2005年第6期811-813,816,共4页 Optical Technique
基金 国家863高技术资助项目
关键词 运动小目标 遥感 检测 光流场 凝视 识别 moving small targets remote sensing detection optic flow recognition
  • 相关文献

参考文献9

  • 1Charlen E C, Jerry S, Jonathan M M. Optimization of point targets tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(1): 15-25.
  • 2Horn B K P, Schunck B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1): 185-203.
  • 3Girosi F, Verri A, Torre V. Constraints for the computation of optical flow[J]. Proceedings of the IEEE Workshop on Visual Motion, 1989, 116-124.
  • 4Russo P, Marandey V, Bui T, Shorde D. Optical flow techniques for moving target detection[J]. SPIE Proceedings, 1990, 1383: 62-71.
  • 5Black M J, Jepson A D. Estimation optical flow in segmented images using variable-order parametric models with local deformations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 972-986.
  • 6Hong E P, Spann M. Robust optical flow computation based on least-median-of-square regression[J]. International Journal of Computer Vision, 1999, 31(1): 51-82.
  • 7Shen W, Markandey V, Anthony R. On total least squares fitting spatiotemporal derivatives to smooth optical flow fields[J]. SPIE Transactions on Signal and Data Processing of Small Targets, 1992, 1698:42-55.
  • 8Qu Y S,Tian W J,Li Y C. Detecting small moving target in images sequences using optical flow based on the discontinuous frame difference[J]. Proceedings of the Third SPIE Multi-spectra Image Processing and Pattern Recognition Conference, 2003, 5286b: 915-918.
  • 9叶斌,彭嘉雄.遥感序列图像中三种点目标检测预处理方法[J].华中理工大学学报,2000,28(12):1-3. 被引量:5

二级参考文献3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部