期刊文献+

基于模糊竞争学习和UD分解的模糊建模

Fuzzy modeling based on fuzzy competitive learning and matrix UD decomposition
下载PDF
导出
摘要 为解决复杂系统模糊建模问题,研究了利用模糊竞争学习实现非线性系统的模糊建模方法.首先,利用模糊竞争学习方法划分输入变量的模糊输入空间,确定模糊模型的规则数、规则,实现模糊模型的结构优化.另外,为了克服递推最小二乘出现的误差积累、传递现象,采用基于矩阵UD分解的递推最小二乘方法确定模糊模型的结论参数,从而实现模糊模型的结构和参数优化.采用该方法对M ackey-G lass混沌时间序列进行建模研究,结果表明可以在线或者离线对M ackey-G lass混沌时间序列进行准确预测,效果较好. For the fuzzy modeling problem of complex system, the fuzzy modeling of nonlinear systems based on fuzzy competitive learning is proposed. First of all, the fuzzy competitive learning is utilized to partition the input space of input variables, and to confirm the number of rules and rules, and then optimize the structure of fuzzy model. In addition, the recursive least square based on matrix UD decomposition is used to confirm the conclusion parameters of fuzzy model for the sake of accumulating and transferring of the errors of recursive least square. The structure and parameters of fuzzy model are optimized on the basis of the presented algorithm. To illustrate the performance of the proposed method, simulations on the chaotic Mackey-Glass time series prediction are performed. Combining either off-line or on-line learning with the proposed method, the chaotic Mackey-Glass time series are accurately predicted, and the good effectiveness is demonstrated.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第6期888-891,共4页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(60575039) 国家"863"重点基础研究计划资助项目(2002AA414010)
关键词 模糊竞争学习 Mackey-Glass混沌时间序列 矩阵UD分解 递推最小二乘 混沌系统 fuzzy competitive learning chaotic Mackey-Glass time series matrix UD decomposition recursive least square chaotic systems
  • 相关文献

参考文献10

  • 1TAKAGI T, SUGENO M. Fuzzy identification of system and its application to modeling and control [J]. IEEE Trans Syst Man Cybern, 1985, 15(1):16-32.
  • 2SUGENO M, TAKAHIRO Y. A fuzzy logic-based approach to qualitative modeling [J]. IEEE Trans on Fuzzy Syst, 1993,1(1):7-31.
  • 3MENDEL J M. Uncertain Rule-Based Fuzzy Logic Systems [M]. NJ: Prentice Hall, 2001.
  • 4WANG Liang, LANGARI R. Complex systems modeling via fuzzy logic [J]. IEEE Trans Syst Man Cybern Part B Cybern, 1996, 26(1):100-106.
  • 5YEN J, WANG Liang. Applying statistical information criteria for optimal fuzzy construction[J]. IEEE Trans on Fuzzy Syst, 1998, 6(6):362-372.
  • 6KOSKO B. Fuzzy Engineering [M]. NJ: Prentice Hall, 1997.
  • 7刘士荣,俞金寿.一类模糊模型的结构优化问题研究[J].计算机学报,2001,24(2):164-172. 被引量:7
  • 8FULAI C, TANG L. Fuzzy competitive learning[J]. IEEE Trans on Neural Network, 1994, 17(3):539-551.
  • 9王宏伟 贺汉根 黄柯棣.一种辨识非线性系统的模糊建模方法[A]..第三届全球华人智能控制与智能自动化大会[C].合肥,2000 7.2163-2166.
  • 10李克平,陈天仑.混沌算法神经网络与含噪声时间序列的预测[J].南开大学学报(自然科学版),2001,34(3):28-31. 被引量:10

二级参考文献10

  • 1刘士荣.神经模糊系统的若干问题研究:博士学位论文[M].上海:华东理工大学,2000..
  • 2刘士荣,博士学位论文,2000年
  • 3Liu S R,Proc 14th IFAC World Congress,1999年,503页
  • 4Yen J,IEEE Trans FS,1998年,6卷,3期,362页
  • 5Chen Y J,Fuzzy Sets and Systems,1996年,161页
  • 6Chao C T,Fuzzy Sets and Systems,1995年,75卷,17页
  • 7Gu Yuqiao,Commun Theory Phys,1999年,32卷,247页
  • 8Gao Xiaoming,IEEE Trans Neural Networks,1997年,8卷,1445页
  • 9Gencay Ramazan,Phys.D,1997年,108卷,119页
  • 10Li Keping,Commun Theory Phys

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部