期刊文献+

基于全蛋白质组的微生物系统发育树构建 被引量:1

Construction of phylogenetic tree of whole proteome microbial organisms as inferred from a new measure of information discrepancy
下载PDF
导出
摘要 新近出现的信息离散性度量方法(简称FDOD方法)已在多个领域获得成功的应用,是一种非比对距离方法.随着越来越多的微生物全基因组测序任务的完成,人们开始在整个基因组水平上探讨物种的系统发育关系.因此,将FDOD方法应用于微生物系统发育分析是一项很有意义的工作.因为氨基酸序列比DNA序列更为保守,能为物种的进化分析提供更为有用的信息.对收集到的163个原核生物和5个真核生物,从完全蛋白质组出发去分析推断其系统的发育关系,所得的系统发育树包括145个细菌、18个古细菌和5个真核细菌,这与三界进化理论符合,大部分低层分支与权威的《伯杰氏系统细菌学手册》相同.并且对高层分支关系提出了一些新建议. A new measure of information discrepancy noted by FDOD for short appeared recently. With the accomplishment of more and more microbial genome sequencing, people have begun to study phylogenetics on the standard of whole genome. So applying the FDOD to infer the phylogeny of whole proteome microbial organisms is significant work. Because the amino acid is more conservative than DNA sequence, it can offer more important information for studying phylogenetics. To study deeply, phylogenetics on the standard of whole proteome microbial organisms for 163 procaryotic organisms and 5 eucaryotic organisms are studied. The results show that the phylogenetic tree, including 145 bacteria, 18 archaea, and 5 eukarya, agrees with the “Bergey's Manual of Systematic Bacteriology” in a majority of lower taxa. In addition, some suggestions are given on higher taxa.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2005年第6期925-930,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(9010303320176005)
关键词 微生物 原核生物 古细菌 系统发育 信息离散性度量 microbe prokaryote archaea phylogeny FDOD
  • 相关文献

参考文献2

二级参考文献1

  • 1Weiwu Fang. On a Global Optimization Problem in the Study of Information Discrepancy[J] 1997,Journal of Global Optimization(4):387~408

共引文献7

同被引文献17

  • 1宋杰,唐焕文.基于一种新的信息离散性度量方法的同源寡聚蛋白质分类[J].数学的实践与认识,2007,37(8):36-42. 被引量:3
  • 2宋杰.基于离散度函数的DNA序列的相似性分析[J].计算机与应用化学,2007,24(6):729-733. 被引量:2
  • 3张永 王瑞.生物信息学中的序列比对算法.电脑知识与技术,2008,(1):181-184.
  • 4ZHANG R, ZHANG C T. Z curves: An intuitive tool for visualizing and analyzing the DNA sequences [ J]. Journal of Biomolecular Structure and Dynamics, 1994, 11 (4) : 767 - 782.
  • 5RANDIC M , VRACKO M , NANDY A , et al, On 3-D graphical representation of DNA primary sequence and their numerical characterization[ J]. Chemical Information and Computer Sciences, 2000, 40(1) : 1235 - 1244.
  • 6LIAO B, WANG T M. Analysis of similarity/ dissimilarity of DNA sequences based on 3-D graphical representation[ J]. Journal of Molecular Structure: THEOCHEM, 2004, 388: 195- 200.
  • 7ZHAO H Q, TONG R F. PN-curve: A 3D graphical representation of DNA sequences and their numerical characterization[ J]. Chemical Physics Letters, 2007, 442:434-440.
  • 8FARACH M, NOORDEWIER M, SAVARI S, et al. On the entropy of DNA: Algorithm and measurements based on memory and rapid convergence[ C]//Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms. San Francisco, 1995:48 -57.
  • 9HARID A, WEBER B, OLMSTED J. On the validity of Shannoninformation calculations for Molecular biological sequences[ J]. Journal of Theoretical Biology, 1990, 147:235 - 254.
  • 10FANG W W, ROBERTS F S, MA Z R. A measure of discrepancy of muhiple sequences[J]. Information Science, 2001, 137:75-102.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部