摘要
介绍含有强迫跃变量的动态电路的经典法分析。对于在非冲激激励下、换路瞬间u_C或i_L发生跃变的动态电路,根据电荷守恒或磁通链守恒的原理,可方便求出u_C(0_+)或i_L(0_+);文中推导出用以求解含有冲激量的i_C(t)或u_L(t)的简便公式,以具体电路为例,通过与拉普拉斯变换法求出的结果进行比较,验证了本文提出的方法及所推公式的正确性和有效性。
The paper introduces the classic analysis methods of the dynamic circuits containing the forced instantaneous variables. When the drives of circuits are not impulse functions δ ( t ), and uc ( t ) or iL ( t ) of the circuits is forced to change instantaneously, uc(0+ ) or iL(0+ ) can be got easily according to the principle about conservation of charge or flux linkage. The handy formulas derived in this paper to find ic (t) or UL ( t ) which contains the impulse, can be used. For example, a circuit is solved with the method and the handy formulas, compared with the result obtained from Laplacian method so as to verify the correction and effi- ciency of the formulas.
出处
《上海应用技术学院学报(自然科学版)》
2005年第2期79-84,共6页
Journal of Shanghai Institute of Technology: Natural Science
关键词
动态电路
强迫跃变
经典法
dynamic circuit
forced instantaneous variables
classic analysis method