期刊文献+

基于光谱维小波特征的混合像元投影迭代分解 被引量:7

Projective Iterative Unmixing of Hyperspectral Image Based on Spectral Domain Wavelet Feature
下载PDF
导出
摘要 混合像元线性分解是高光谱遥感应用的关键技术之一.本文利用小波变换多分辨率分析的特点,提出了一种以小波低频系数为特征的混合像元投影迭代分解的方法.首先利用离散二进小波提取了高光谱影像特征,再基于影像特征,用投影迭代方法自动确定出端元光谱,并以限制性的最小二乘方法估计出混合像元的组分.实验结果表明,本文方法能够较大的提高遥感影像混合像元的分解精度. Linear pixel unmixing is one of the key technologies for hyperspectral image application. However, there are two problems for the hyperspectral decomposition in operational cases. One is the endmembers of an image can' t be extracted automatically with traditional supervised ways;the other is unmixing hundreds of spectral bands directly may reduce accuracies due to the high correlation between bands. To mitigate the problems, we proposed a method for abundance estimation from spectral domain wavelet features. We utilized the discrete wavelet transform (DWT) as a preprocessing step for the feature extraction, then selected endmembers with projective iterative algorithm in an unsupervised fashion based on the features. In the end, we performed a constrained least square method for the abundance estimation. Algorithm validation and comparison were done with real PHI data. Experimental results show that the use of DWT-based features can improve the abundance estimation, as compared to those of original hyperspectral signals or conventional PCA-based features.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第11期1933-1936,共4页 Acta Electronica Sinica
基金 国家973项目(No.2006CB701302) 国家自然科学基金(No.40471088)
关键词 小波特征 光谱分解 端元提取 投影迭代 wavelet feature spectral unmixing endmember extraction iterative projection
  • 相关文献

参考文献8

  • 1Bateson C A,Curtiss B.A method for manual endmember selection and spectral unmixing[J].Remote Sensing of Environmr nt,1996,55(3):229-243.
  • 2Ifarraguerri A,Chang Chein-I.Unsupervised hyperspectral image analysis with projection pursuit[J].IEEE Trans.Geoscience and remote sensing,2000,38(6):2529-2538.
  • 3Penn B S.Using simulated annealing to obtain optimal linear endmember mixtures of hyperspectral data[J].Computers & Geosciences,2002,28(7):809-817.
  • 4Winter M E N-FINDR:An algorithm for fast autonomousspectral Endmember determination in hyperspectral data[A].Proc.SPIE Imaging Spectrometry[C].Denvor,CO,USA:1999.266-275.
  • 5吴波,张良培,李平湘.非监督正交子空间投影的高光谱混合像元自动分解[J].中国图象图形学报(A辑),2004,9(11):1392-1396. 被引量:27
  • 6蒲瑞良 宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2003.185-228.
  • 7Chang Chein-I,Du Qian.Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J].IEEE Trans Geoscience and remote sensing,2004,42(3):608-619.
  • 8Chang Chein-I,Daniel Heinz C.Constrained subpixel targetdetection for remotely sensed imagery[J].IEEE Trans Geoscience and remote sensing,2000,38(3):1144-1159.

二级参考文献8

  • 1陈连彭.童庆喜.郭华东.遥感信息机理研究[M].北京:科学出版社,1998:201~212
  • 2Harasnyi Joseph C, Chang Chein-I. HyperspectrrtL image classifieation and dimennion reduetiont an orthogonal subspace projection approach[J]. IEEE Transactions on Geosciertce and Remote Sensing, 1994,32(4):779-785.
  • 3Settle J J. On the relationshiP between spectral unmixing andsubspace projeetion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(4) : 1045- 1046.
  • 4Ren Hsuan, Chang Chein-I. A generalized orthogonal subspace projection approach to unsupervised multispectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(6), 2515-2528.
  • 5Du Qian, Ren Hsuan, Chang Chein-I. A comparative study for orthogonal subspace projection and constrained energy minimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6):1525-1529.
  • 6Tu Te-Ming, Chen Chin-Hsing, Chang Chein-I. Aposteriori least squares orthogonal subspace projection approach to desired signature extraction and detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,3S(1) : 127-139.
  • 7Chang Chein-I, Zhao Xiao-Li, Althouse Mark L G, et al. Least squares subspace projection approach to mixed Pixel classification for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(3): 898-912.
  • 8Chang Chein-I, Heinz Daniel C. Constrained subpixel target detection for remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(3):1144-1159.

共引文献27

同被引文献99

引证文献7

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部