期刊文献+

一种基于RBF神经网络快速准确七段码识别方法 被引量:1

A High Performance Seven Segment Display Recognition Approach Based on RBF Neural Network
下载PDF
导出
摘要 文章介绍了一种基于RBF神经网络七段码识别方法,它是在VC++编程环境下实现的。本系统主要特征是分段线性灰度变换、倾斜度调整、映射归一、特征提取。实验表明这种方法运行速度快、识别率高。这种方法具有一定的实用价值。 The paper introduces a high performance Radial Basis Function (RBF) neural network approach for seven segment display recognition, which is realized in Visual C++ compiling environment. The main features of the system are piecewise linear gray level transformation, slope angle adjustment, mapping and normalization, feature distilling. The experiment shows that the approach is a fast and high accuracy method of digital recognition.The approach is of practical value.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第12期106-109,共4页 Microelectronics & Computer
基金 广东省自然科学基金项目(4009469) 湖南省教育厅资助项目(04C582)
关键词 灰度变换 倾斜度调整 映射归一 特征提取 RBF神经网络 Gray level transformation, Slope angle adjustment, Mapping and normalization, Feature distilling, RBF neural network
  • 相关文献

参考文献7

  • 1宋加涛,刘济林.车辆牌照上英文和数字字符的结构特征分析及提取[J].中国图象图形学报(A辑),2002,7(9):945-949. 被引量:41
  • 2S N Nawaz, M Sarfraz, A Zidouri. An Approach to Offline Arabic Character Recognition Using Neural Networks.IEEE Transaction of Pattern Recognition and Machine Intelligence, 2003, 7(3): 1328~1331.
  • 3M A Neifeld, D Psaltis. Optical Implementations of Radial Basis Classifiers. Appl. Oct. 1993, 32(8): 1370~1379.
  • 4Wu Wei, et al. Research on Number - Plate Recognition Based on Neural Networks. Procee of the IEEE Workshop on NNSP, 2001: 529~538.
  • 5Chan C K. Dissertation: Hough Transform Techniques for Pattern Recognition,the University of London, 1994.
  • 6Hussain B, Kabuka R. A Novel Feature Recognition Neural Networks and its Application to Character Recognition and Machine InteLligence. IEEE Transaction of Pattern Recognition, 1994, 16(1): 98~106.
  • 7Lee Y. Handwritten Recognition Using K Nearest-Neighbour Radial Basis Function and Back propagation Neural Networks. Neural Compution, 1991, 3: 440~449.

二级参考文献6

共引文献40

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部