期刊文献+

人工神经网络解析CdZnTe探测器γ谱 被引量:4

Method in analysis of CdZnTe γ spectrum with artificial neural network
下载PDF
导出
摘要 半导体CdZnTe探测器具有体积小、分辨率高、可在室温下工作等优点而适用于野外便携式γ谱仪系统。由于CdZnTe晶体内电荷收集不完全导致γ谱产生低能尾巴,因而增加了常规谱解析的难度。采用了人工神经网络方法进行全γ谱法定性定量分析,可以充分利用γ谱所含信息,迅速准确地得出结果,避免了采用常规谱解析方法时低能尾巴对峰形拟合的影响。 The analysis of gamma-ray spectra to identify lines and their intensities usually requires expert knowledge and time consuming calculations with complex fitting functions. CdZnTe detector often exhibits asymmetric peak shape particularly at high energies making peak fitting methods and sophisticated isotope identification programs difficult to use. This paper investigates the use of the neural network to process gamma spectra measured with CdZnTe detector to verify nuclear materials. Results show that the neural network method gives advantages, in particular, when large low-energetic peak tailings are observed.
机构地区 清华工程物理系
出处 《核电子学与探测技术》 CAS CSCD 北大核心 2005年第6期626-629,共4页 Nuclear Electronics & Detection Technology
关键词 CdZnTe探测器 人工神经网络 Γ能谱 核素识别 CdZnTe detector γ spectrum artificial neural network nuclide identification
  • 相关文献

参考文献1

  • 1Detection of Radioactive Materials at Borders, IAEA-TECDOC-1312.

同被引文献25

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部