期刊文献+

PIC/MCC数值模拟四阳极直流辉光放电 被引量:2

Numerical simulation of four anodes DC glow discharge by PIC/MCC
下载PDF
导出
摘要 利用OOPIC代码并结合MCC方法考察四阳极低气压直流辉光放电中粒子间的碰撞,并对其进行了数值模拟。首先分析OOPIC代码的计算流程,给出模拟的边界条件和时间、空间步进;然后对所得到的等离子体密度、温度的分布情况进行了分析。结果表明,放电气压、电流以及环电极的有效宽度均影响等离子体密度和温度的径向分布。当气压为300Pa时,电子密度在径向较大范围内是均匀分布的,而当气压升高到800Pa时,其径向不均匀增大,且总的密度和电子的平均温度下降。放电电流的增大使得等离子体密度和温度均相应升高。但环电极有效宽度的减小使得等离子体密度的分布更不均匀,并使总的密度和平均温度均下降。 In order to obtain the characteristics of the plasma generated in the low helium pressure four anodes DC glow discharge, numerical simulation of the discharge using the code OOPIC and MCC has been carried out. Firstly, the OOPIC calculating flow is analyzed and the boundary conditions, the mesh spacing, and the time step in the simulation are presented. Then, the results about the distributions of the plasma density and temperature are analyzed. The results show that, the gas pressure, electrical current, and the virtual breadth of the annular electrode affect the radial distribution of the plasma density and temperature. When the helium pressure is 300Pa, the electrons are distributed equally in almost radial range. But when the pressure is up to 800Pa, radical electron distribution varies greatly, and the total density and the average temperature of electron descend. The augmentation of the electrical current makes the plasma density and temperature higher. But the lessening of virtual breadth of the annular electrode makes the radial distribution of plasma density more unequal, and the total density and the average temperature lower.
出处 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2005年第4期305-310,共6页 Nuclear Fusion and Plasma Physics
关键词 数值模拟 四阳极OOPIC MCCI Numerical simulation Four-anodes OOPIC MCC
  • 相关文献

参考文献8

  • 1Straaten T A van der, Cramer N F, Falconer I S, et al. The cylindrical DC magnetron discharge:Ⅰ. Particle-in-cell simulation [J]. J. Phys. D: Appl. Phys., 1998, 31:177.
  • 2Wei Helin, Liu Zuli. Monte Carlo simulation for the electron behavior in cathode fan of discharge plasma [J]. Chiaese Phys. Lett., 1993, 10:315.
  • 3Ralf Krimke, Herbert M Urbassek, Dariusz Korzec, et al.PIC/MC simulation of a strongly asymmetric low-pressure BF discharge [J]. J. Phys. D: Appl. Phys., 1994, 27:1653.
  • 4Verboncoeur J P, Langdon A B,Gladd N T. An object-oriented electromagnetic PIC code [J]. Computer Physics Communications, 1995, 87:199 - 211.
  • 5Birdsall C K . Particle-in-cell charged-particle simulations,plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Trans. Plasma Sci., 1991, 19: 65.
  • 6Birdsall C K, Langdon A B. Plasma physics via computer[M]. New York: McGraw-Hill, 1985.
  • 7袁忠才,时家明.四阳极直流辉光放电正柱区数值分析[J].核聚变与等离子体物理,2005,25(3):228-232. 被引量:2
  • 8Vahedi V, Di Peso G. Simultaneous potential and circuit solution for two-dimensional bounded plasma simulation codes[J]. Journal of Computational Physics, 1997, 131 : 149 -163.

二级参考文献16

  • 1余云鹏,林舜辉,林旭升,池凌飞,林璇英,林揆训.氩直流辉光放电等离子体中电子运动及能量的模拟[J].核聚变与等离子体物理,2004,24(3):236-240. 被引量:3
  • 2Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing [ M ]. New York: John Wiley and Sons, Inc., 1994.
  • 3Braithwaite N St J. Introduction to gas discharges [ J]. Plasma Sources Sci. Techn., 2000, 9: 517-527.
  • 4McDaniel EW. Collision phenomena in gases [M]. New York: John Wiley and Sons, Inc., 1964.
  • 5Brown S C. Basic data of plasma physics [M]. Cambridge,MA: MIT Press, 1967.
  • 6Bogaerts A. Comprehensive modelling network for dc glow discharges in argon [ J ]. Plasma Sources Sci. Techn.,1999, 8:210-229.
  • 7Uhrlandt D, Schmidt M, Behnke J F, et al. Self-consistent description of the dc column plasma including wall interaction[J]. J. Phys. D: Appl. Phys., 2000, 33:2475-2482.
  • 8Arslanbekov R R. Model of the cathode region and gas temperature of a dc glow discharge at high current density [J].J. Phys. D: Appl. Phys., 2000,33:524-544.
  • 9Berni L A, Ueda M, Gomes G F, et al. Experimental results of a dc glow discharge source with controlled plasma floating potential for plasma immersion ion implantation [ J ]. J.Phys. D: Appl. Phys. , 2000, 33:1592-1595.
  • 10Uhrlandt D. Power balance and space-charge confinement in a neon dc column plasma [J]. J. Phys. D: Appl. Phys. ,2002, 35:2159 - 2168.

共引文献1

同被引文献55

  • 1张雄,屠彦,杨兰兰,王保平,尹涵春,童林夙.三维PDP放电过程数值模拟软件[J].光电子技术,2004,24(4):214-217. 被引量:3
  • 2袁忠才,时家明,许波.四阳极装置的辉光放电特性[J].核聚变与等离子体物理,2006,26(2):146-150. 被引量:1
  • 3Dawson J M. One-dimensional plasma model [J]. Phys. Fluids, 1962, 2: 445.
  • 4Graves D B, Jensen K E A continuum model of DC and RF discharges [J]. IEEE Trans. Plasma Sci., 1986, 14: 92.
  • 5Graves D B. J. Fluid model simulations of a 13,56MHz rf discharge: time and space dependence of rates of electron impact excitation [J]. Appl. Phys., 1987, 62: 88.
  • 6Park S K, Economou D J. J. Analysis of low pressure rf glow discharges using a continuum model [J]. Appl. Phys., 1990, 68: 3904.
  • 7Makabe T, Nakano N. Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz [J]. Phys. Rev. A, 1992, 45: 2520.
  • 8Ventzek P L G, Hoekstra R J, Kushner M J. J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing [J]. Vac. Sci. Techn. B, 1994, 12: 461.
  • 9Deshmukh S and Economou D J. J. Remote plasma etching reactors: modeling and experiment [J]. Vac. Sci. Technol. B, 1993, 11: 206.
  • 10Paranjpe A P J. Modeling an inductively coupled plasma source [J]. Vac. Sci. Techn. A, 1994, 12: 1221.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部