摘要
Hot compression tests were conducted on a Gleeble-1500 simulator to investigate the hot deformation behavior of BT20 Ti alloy (Ti-6Al-2Zr-IMo-1V) in the temperature range from 550 to 1000℃ at constant strain rate in the range of 0.01-1s^-1, and then the optimum spinning temperature range was determined. Moreover, tube spinning experiments were executed to verify the reasonability of the optimum temperature range. The results show that the flow stress declines gradually with increasing deformation temperature and decreasing strain rate. In α+β phase region the dynamic recrystallization is the main softening mechanism and in β phase region the hot deformation softening is controlled by dynamic recovery. In α+β phase region with reducing strain rate dynamic recrystallization is fully developed. The optimum temperature of hot spinning is 850-900℃ and that of warm spinning is 600-650℃. Meanwhile, at the temperature above 600℃ tubular workpieces of BT20 Ti alloy have been spun without surface cracks and microstructure inhomogeneity, which proves that the optimum spinning temperature range obtained through hot compression experiments is reasonable.
Hot compression tests were conducted on a Gleeble-1500 simulator to investigate the hot deformation behavior of BT20 Ti alloy (Ti-6Al-2Zr-IMo-1V) in the temperature range from 550 to 1000℃ at constant strain rate in the range of 0.01-1s^-1, and then the optimum spinning temperature range was determined. Moreover, tube spinning experiments were executed to verify the reasonability of the optimum temperature range. The results show that the flow stress declines gradually with increasing deformation temperature and decreasing strain rate. In α+β phase region the dynamic recrystallization is the main softening mechanism and in β phase region the hot deformation softening is controlled by dynamic recovery. In α+β phase region with reducing strain rate dynamic recrystallization is fully developed. The optimum temperature of hot spinning is 850-900℃ and that of warm spinning is 600-650℃. Meanwhile, at the temperature above 600℃ tubular workpieces of BT20 Ti alloy have been spun without surface cracks and microstructure inhomogeneity, which proves that the optimum spinning temperature range obtained through hot compression experiments is reasonable.