摘要
为了更有效地进行分抗的电路设计,对信号处理中分数演算的模拟电路实现进行了探讨,给出了分数演算的模拟电路无源实现和有源电路实现方案;推导出求解分抗阻抗的精确递推公式。无源电路中给出了分数阶低通和高通滤波器方案,有源电路采用高带宽电流型跨导运算放大器(OTA)进行设计,满足高频信号分数阶运算的要求;同时进行了理论计算和电路模拟性能分析,分析结果表明两种实现方案均能很好地完成信号的分数演算功能,对于分数演算的理论研究与工程实践有着实际意义。
To design fractance more efficiently, the discussion about the analog circuit implement of the fractional calculus inthe signal processing was presented. The passive and active analog circuit implements were proposed. An accurate recursive formula to solve the impedance of fractance was deduced. Low-pass and high-pass frequency circuits were proposed in the passive analog implement. In the active implement, the current-mode operational transeonductance amplifiers with high frequency bandwidth were used to fit the requirements of the fractional calculus of high frequency signals. The resuits of experiments showed that both implements can perform the function of signals' fractional calculus perfectly.
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2005年第6期150-154,共5页
Journal of Sichuan University (Engineering Science Edition)
基金
国家自然科学基金资助项目(60572033)
关键词
分数演算
分形
分抗
跨导运算放大器
fractional calculus
fractal
fractance
Operational Transconductance Amplifier (OTA)