期刊文献+

近似已知函数的高精度稳定近似求导方法 被引量:3

A STABLE HIGH ACCURACY APPROXIMATE DIFFERENTIATION OF APPROXIMATELY SPECIFIED FUNCTIONS
原文传递
导出
摘要 提出了一种新的求近似已知函数一阶导数,二阶导数的稳定方法.与Groetsch提出的求 近似导数方法相比较,提高了稳定近似导数的收敛率,在一定条件下一阶导数的收敛率可达 到O(δ2n/2n+1),二阶导数的收敛率可达到P(δ2n-1/2n+1),给出了数值例子. We present a new stable approximate methods for differentiation of specified functions, second differentiation of specified functions, the convergence rate of the approximate differentiation and second differentiation is improved under some condition and that the improved estimate is O(δ2n/2n+1) and O(δ2n-1/2n+1), as compared with the Groetsch's method for approximate differentiation. Numerical experiments are presented.
出处 《数值计算与计算机应用》 CSCD 2005年第4期269-277,共9页 Journal on Numerical Methods and Computer Applications
关键词 不适定问题 近似微商 收敛率 Ill-posed problems, approximate differentiation, convergence rate
  • 相关文献

参考文献10

  • 1Tikhonov A H. Arsenin V Y. Solutions of Ill-Posed Problems, NewYork:Wiley, 1977.
  • 2Andreas Kirsch. An introduction to the mathematical theorem of inverse problems, SpringerVerlag, New-York, 1996.
  • 3Murio D A. Automatic numerical differentiation by discrete modification, Comput. Math. Appl.13(1987) 381-386.
  • 4杨宏奇,李岳生.近似已知函数微商的稳定逼近方法[J].自然科学进展(国家重点实验室通讯),2000,10(12):1088-1093. 被引量:11
  • 5Groetsch C W. Optimal order of accuracy in Vasin's method for differentiation of noisy functions,J. Optim. Theory Appl, 74:2(1992) 373-377.
  • 6Groetsch C W. Differentiation of approximately specified funcations, American Mathematical Monthly, 98(1991)847-851.
  • 7Cullum J. Numerical differentiation and regularization, SIAM J Numer. Anal, 8(1971) 254-265.
  • 8Lancoz C. Applied analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1956.
  • 9Groetsch C W. Lanczos's generalized derivative, American Mathematical Monthly, 105:4(1998)320-326
  • 10旌吉林 刘淑珍 陈桂芝.计算机数值方法[M].高等教育出版社,1996..

二级参考文献2

  • 1李岳生.样条与插值[M].上海:上海科学技术出版社,1981..
  • 2李岳生.解第一类积分方程的正则-样条方法[J].地球物理学报(专辑Ⅱ),1990,33:6-6.

共引文献10

同被引文献11

  • 1陈志芳,肖庭延.Sturm-Liouville算子参数识别的离散正则化方法[J].高等学校计算数学学报,2005,27(S1):324-328. 被引量:3
  • 2Dinh Nho Hao. A mollification method for ill-posed problems[J]. Numer. Math., 1994, 68: 469-506.
  • 3Wang Y B, Hon Y C, Cheng J. Reconstruction of High Order Derivatives from Input Data [J]. Journal of Inverse and Ill-posed Problems, 2006, 14 (2): 205-218.
  • 4Hansen P C. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems [J]. Numerical Algorithms, 1994, 6 (1): 1-35.
  • 5Marchuk G I, Shaidurov V V. Difference methods and their extrapolations [M]. Berlin: Springer Verlag, 1983.
  • 6李岳生.算子样条函数磨光法[J].计算数学,1981,4:3-10.
  • 7Dinh Nho Hào.A mollification method for ill-posed problems[J].Numer.Math,1994,68:469-506.
  • 8赵振宇,贺国强.重构高阶导数的磨光方法[J].应用数学和力学,2008,29(6):696-704. 被引量:1
  • 9黄小为,吴传生,高飞.高阶数值微分的积分方法[J].数学杂志,2008,28(4):431-434. 被引量:7
  • 10贾现正,王彦博,程晋.散乱数据的数值微分及其误差估计[J].高等学校计算数学学报,2003,25(1):81-90. 被引量:11

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部