摘要
提出了一种新的求近似已知函数一阶导数,二阶导数的稳定方法.与Groetsch提出的求 近似导数方法相比较,提高了稳定近似导数的收敛率,在一定条件下一阶导数的收敛率可达 到O(δ2n/2n+1),二阶导数的收敛率可达到P(δ2n-1/2n+1),给出了数值例子.
We present a new stable approximate methods for differentiation of specified functions, second differentiation of specified functions, the convergence rate of the approximate differentiation and second differentiation is improved under some condition and that the improved estimate is O(δ2n/2n+1) and O(δ2n-1/2n+1), as compared with the Groetsch's method for approximate differentiation. Numerical experiments are presented.
出处
《数值计算与计算机应用》
CSCD
2005年第4期269-277,共9页
Journal on Numerical Methods and Computer Applications
关键词
不适定问题
近似微商
收敛率
Ill-posed problems, approximate differentiation, convergence rate