期刊文献+

超椭圆曲线上的Jacobian加法算法的优化 被引量:1

An optimized algorithm for Jacobians of hyperelliptic curves
下载PDF
导出
摘要 计算超椭圆曲线上的Jacobian群中两个元素D和E的运算2D+E是标量乘法的重要过程,该运算通常分为一个倍点和一个加法进行两次计算.通过优化T.Lange的计算公式,直接计算2D+E,减少了中间结果的计算量,使得计算效率提高6%~8%.该方案也可用于超椭圆曲线密码体制的数字签名验证和Weil/Tate对的计算. In hyperelliptie curve eryptosystems, it is one of the main steps in computing scalar multiplication to evaluate 2D + Efrom the given elements D and E in the Jacobian of a hyperelliptic curve. In this paper, an optimized method for computing 2D + E is proposed, which will raise the computing efficiency by about 6% - 8%.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第6期922-926,共5页 Journal of Xidian University
基金 973项目(G1999035804) 福建省自然科学基金资助项目(A0540011) 福建省教育厅科学基金资助项目(JA04264) 莆田市科技计划资助项目(05022)
关键词 超椭圆曲线密码 JACOBIAN 加法算法 Harley算法 hyperelliptic curve cyrptography Jacobian addition algorithm Harley algorithm
  • 相关文献

参考文献2

二级参考文献37

  • 1[1]N Koblitz. Elliptic curve cryptosystems [J]. Math. Comp. 1987, 48(177):203-209.
  • 2[2]V S Miller. Use of elliptic curve in cryptography [ A].In GRYPTO'85( Santa Barbara, Calif., 1985 ), LNCS. 218 [ C ], Spring- Verlag. 1986:417 - 426.
  • 3[3]N Koblitz. Hyperelliptic cryptography [ J ]. J. of Crypto., 1989, 1 (3):139- 150.
  • 4[4]D G Cantor. Computing in the jacobian of a hyperelliptic curve [J].Math. Comp., 1987,48:95 - 101.
  • 5[5]N Koblitz. Algebraic Aspects of Cryptography [ M]. Algorithms and Comutation in Math.3,Springer-Verlag 1998.
  • 6[6]Mumford D. Tata Lectures on Theta Ⅱ [ M ]. Birkhauser-Verlag,Boston. 1984.
  • 7[7]Paulus Ruck, H -G. Real and imaginary quadratic representations of hvperelliptic fmction fields logarithms [ J ]. Math. Comp., 1999, 68:1233 - 1241.
  • 8[8]A Stein. Sharp upper bound for arithmetics in hyperelliptic function rields [ R ]. Techn. Report CORR # 99-23, University of Waterloo (2000) ,68 pages. http://www. cacr. math. uwaterloo. ca.
  • 9[9]Andreas Enge. The extended euclidian algorithm on polynomials, and the computational efficiency of hyperelliptic cryptosystems. http://www. math. umi-augsburg. de/~ enge/Publikationen. html.
  • 10[10]Robin Hartshome. Algebraic Geometry [ M]. GTM 52,Springer-Verlag,New York 1977.

共引文献27

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部