摘要
以解非线性方程的常微分方程方法和传统牛顿法为基础,提出方程求根的一种具有参数的修正牛顿迭 代法,证明了这种迭代法至少具有三阶收敛速度,最后通过实际算例给出了相关迭代法相互比较的数值结果.
Based on the methods of ordinary differential equation and the traditional Newton iteration, a modified Newton's iteration method with adjusted parameter has been presented. And it has also been proved that there are at least three orders of convergence. Finally, the advantage of the method has been shown through several numerical tests.
出处
《湖北民族学院学报(自然科学版)》
CAS
2005年第4期320-322,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
湖北省优秀中青年项目(Q200529001).
关键词
迭代法
收敛性
预估校正
非线性方程
iteration method
convergence
predictor - corrector
nonlinear equation