期刊文献+

Integral Equations for the Spin-Weighted Spheroidal Wave Functions 被引量:2

Integral Equations for the Spin-Weighted Spheroidal Wave Functions
下载PDF
导出
摘要 We present new integral equations for the spin-weighted spheroidal wave functions which in turn should lead to global uniform estimates and should help in particular in the study of their dependence on the parameters. For the prolate spheroidal wavefunction with m=0, there exists the integral equation whose kernel is (sin x)/x, and the sinc function kernel (sin x)/x is of great mathematical significance. We also extend the similar sinc function kernel (sin x)/x to the case m≠0 and s≠0, which interestingly turn out as some kind of Hankel transformations. We present new integral equations for the spin-weighted spheroidal wave functions which in turn should lead to global uniform estimates and should help in particular in the study of their dependence on the parameters. For the prolate spheroidal wavefunction with m=0, there exists the integral equation whose kernel is (sin x)/x, and the sinc function kernel (sin x)/x is of great mathematical significance. We also extend the similar sinc function kernel (sin x)/x to the case m≠0 and s≠0, which interestingly turn out as some kind of Hankel transformations.
作者 田贵花
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第12期3013-3016,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundations of China under Grant Nos 10475013, 10373003, 10375087, and 10375008, the National Basic Research Program under Grant No 2004CB318000, and the Post-Doctor Foundation of China.
关键词 ROTATING BLACK HOLE FOURIER-ANALYSIS STABILITY PERTURBATIONS ROTATING BLACK HOLE FOURIER-ANALYSIS STABILITY PERTURBATIONS
  • 相关文献

参考文献18

  • 1Teukolsky S A 1972 Phys. Rev. Lett. 29 1114.
  • 2Teukolsky S A 1973 J. Astrophys. 185 635.
  • 3Press W H and Teukolsky S A 1973 J. Astrophys. 185 649.
  • 4White B 1989 J, Math.Phys. 30 1301.
  • 5Stewart J M 1975 Proc. R. Soc. London A 344 65.
  • 6Bever H R 2001 Commun. Math. Phys. 221 659.
  • 7Beyer H R 1999 Commun. Math. Phys. 204 397.
  • 8Hartle J B and Wilkins D C 1974 38 47.
  • 9Breuer R A, Ryan Jr M P and Waller S 1977 Proc. R. Sac.London A 358 71.
  • 10Chandrasekhar S- 1983 The Mathematical Theory of Black Holes (Oxford: Oxford Ualverslty Press) chaps 8 and 9.

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部