期刊文献+

一种基于递归神经网络的自适应控制方法研究 被引量:3

A Novel Adaptive Control Algorithm Based on Recurrent Neural Network
下载PDF
导出
摘要 本文针对快速、多变量、强非线性的复杂系统的控制问题,在强化学习方式的基础上,提出一种新的自适应控制方法。该方法在没有先验知识的条件下,基于递归神经网络并结合强化学习的自调节能力,通过自身神经网络的在线学习,有效控制不稳定的非线性系统。本文以一级倒立摆系统为实验对象,仿真实验结果表明:所提出的控制方法具有非常好的控制效果和稳定精度,抗干扰能力强。 Based on reinforcement learning, a novel adaptive control algorithm is proposed for the complex systems which have the characteristics of speediness, multiple variables, serious nonlinear. The method based on recurrent neural network needs not know the priori knowledge of system, combines the self-tune property of reinforcement learning through on-line learning of network, and at last effectively controls the unstably nonlinear system. The experimental object is a single inverted pendulum. It is shown from the simulation results that this method has good control effect, good steady accuracy and good interference rejection.
出处 《微计算机信息》 北大核心 2005年第11S期88-90,共3页 Control & Automation
基金 国家自然科学基金资助项目(60375017)
关键词 强化学习 OIF ELMAN网络 BP网络 一级倒立摆系统 reinforcement learning OIF Elman-network BP network single inverted pendulum
  • 相关文献

参考文献5

  • 1Barto A G, Sutton S, Anderson C W. Neuron like adaptive elements that can solve difficult learning control problems [J].IEEE Trans. on Systems,Man, and Cybernetics, 1983, 13(5): 834-846.
  • 2Charles W. Anderson.Learning to Control an Inverted Pendulum Using Neural Networks[J].IEEE Control System Magazine, 1989, 9(4): 31-37.
  • 3D.A.White, D.A.Sofge. Handbook of Intelligent Control: Neural, Fuzzy,and Adaptive Approaches[M]. New York: Van Nostrand Reinhold, 1992.
  • 4Jennie Si, Yu-Tsung Wang.On-Line Learning Control by Association and Reinforcement [J].IEEE TRANSACTIONS ON NEURAL NETWORKS,2001, 12(2): 264-276.
  • 5时小虎,梁艳春,徐旭.改进的Elman模型与递归反传控制神经网络[J].软件学报,2003,14(6):1110-1119. 被引量:57

二级参考文献19

  • 1Senjyu T, Yokoda S, Uezato K. A study on high-efficiency drive of ultrasonic motors. Electric Power Components and Systems,2001,29(3 ): 179- 189.
  • 2Uehino K. Piezoelectric motors: Overview. Smart Materials and Structures, 1998,7(3):273-285.
  • 3Hagood NW, McFarland AJ. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995,42(2):210--224.
  • 4Senjyu T, Miyazato H, Yokoda S, Uezato K. Speed control of ultrasonic motors using neural network. IEEE Transactions on Power Electronics, 1998,13(3):381-387.
  • 5Lin F J, Wai R3, Shyu KK, Liu TM. Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2001,48(4):900-913.
  • 6Senjyu T, Yokoda S, Uezato K. Speed control of ultrasonic motors using fuzzy neural network. Journal of Intelligent Fuzzy System,2000,8(2):135-146.
  • 7Lin F J, Wai R J, Hong CM. Recurrent neural network control for LCC-resonant ultrasonic motor drive. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2000,47(3):737-749.
  • 8Elman JL. Finding structure in time. Cognitive Science, 1990,14(2):179-211.
  • 9Pham DT, Liu X. Dynamic system modeling using partially recurrent neural networks. Journal of Systems Engineering,1992,2(2):90--97.
  • 10Pham DT, Liu X. Training of Elman networks and dynamic system modeling. International Journal of Systems Science, 1996,27(2):221 -226.

共引文献56

同被引文献14

  • 1张双民,石纯一.一种基于特征向量提取的FMDP模型求解方法[J].软件学报,2005,16(5):733-743. 被引量:3
  • 2AbrahamSilberschatz HenryEKorth SSudarshan.数据库系统概念[M].北京:机械工业出版社,2000.1-99.
  • 3Boutros S.BOUTROS,Bipin C.DESAI.A two-phase commit protocol and its performance.Database and Expert Systems Applications,1996.Proceedings.Seventh International Workshop on,1996 Page(s):100 -105
  • 4SUTTON R,BARTO A.Reinforcement learning:An introduction[M].Cambridge,MA:MIT Press,1998.
  • 5MURAO H,KITAMURA S.Q-learning with adaptive state segmentation (QLASS)[C]// Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation(CIRA'97).Washington,DC:IEEE Computer Society,1997:179-184.
  • 6MORALES E P.Relational state abstractions for reinforcement learning[C]// Proceedings of the 21st International Conference on Machine Learning(ICML 2004).New York,NY:ACM Press,2004:27-32.
  • 7MURATA M,OZAWA S.A reinforcement learning algorithm for a class of dynamical environments using neural networks[C]// SICE 2003 Annual Conference.Washington,DC:IEEE Computer Society,2003:2004-2009.
  • 8SEKINO M,KATAGAMI D,NITTA K.State spaces self organization based on the interaction between basis functions[C]// Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2005).Washington,DC:IEEE Computer Society,2005:2929-2934.
  • 9ORMONEIT D,GLYNN P.Kernel-based reinforcement learning in average-cost problems[J].IEEE Transactions on Automatic Control,2002,47(10):1624-1636.
  • 10RUDOLPH P.Adaptive control of human posture using reinforcement learning[D].Cleveland,OH:Cleveland state university,2003.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部