期刊文献+

任意概率密度信号的盲分离 被引量:2

Blind Separation of Independent Sources with Any Probability Density Function
下载PDF
导出
摘要 独立分量分析(ICA)是一种把多维随机矢量转换为尽可能统计独立的分量的统计方法,被广泛用于非高斯信号处理领域。本文给出了一种基于峰度的盲源分离(BSS)算法,也可看作是最大似然方法的扩展,解决了最大似然方法限制过多的缺陷,且与用Comon的方法求解Givens矩阵相比,结构清晰、实现简单。仿真证明了算法的有效性。 Independent component analysis (ICA)is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. It is widely used in nonGaussian signals processing. An algorithm of ICA based on kurtosis is presented in this paper; it can also be regarded as Extended Maximum Likelihood (ML); the problem of too many constraints in ML is solved ; it is simpler and easier to implement in solving Givens Matrix compared with Comon" s. The simulation justifies its effectiveness.
出处 《微计算机信息》 北大核心 2005年第10X期165-166,共2页 Control & Automation
基金 国家自然科学基金60172029
关键词 ICA 盲源分离 最大似然 扩展最大似然Givens矩阵 ICA, Blind Source Separation (BSS), Maximum Likelihood (ML), Extended Maximum Likelihood (EML),Givens Matrix
  • 相关文献

参考文献3

  • 1Pierre Comon,“Independent component analysis, A new concept?”IEEE.Trans. Signal Processing, Vol.36, No.3, Special issue on High-Order Statistics, April 1994, PP.287-314.
  • 2Jean-Francois Cardoso,Member,IEEE “Blind Signal Separation:Statisical Principles,” Proceedings of the IEEE,Vol.86, No. 10, October 1998.
  • 3F.Harry and J.-L. Lacoume, “Maximum likelihood estimators and Cramer-Rao bounds in source separation, ”Signal Process, vol.55, pp.167-177, Dec.1996.

同被引文献9

  • 1孙才新.输变电设备状态在线监测与诊断技术现状和前景[J].中国电力,2005,38(2):1-7. 被引量:174
  • 2Bach F R,Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Research ,2002 (3) :1-48.
  • 3Hyvarinen A, Karhunen J, Oja E. Independent component analysis [ M ]. New York : John Wiley&Sons, Inc,2001.
  • 4P.Georgiev, P. Pardalos, F..1. Theis, A. Cichocki, and H Bakardjian; Sparse component analysis: a new tool for data mining In Data Mining in Biomedicine, Springer, New York, NY, USA 2005.
  • 5Y. Q. Li, A. Cichocki, S. Amari. Analysis of sparse representation and blind source separation. Neural computation, vol.16, 1193-1234, 2004.
  • 6D. O'Grady, A Pearlmutter. Soft-LOST: EM on a Mixture of Oriented Lines. 2005.
  • 7Yuanqing Li, A. Cichocki, S. Amari. Underdetermined Blind Source Separation based on Sparse Represention. IEEE Transactions on Signal Processing, 2006, Vol.54 423-437.
  • 8Zhaoshui He and Andrzej Cichocki. K-EVD Clustering and Its Applications to Sparse Component Analysis. J.Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 90-97, 2006.
  • 9张会平,谈克雄,董凤字,王晋昌.电容型设备在线监测数据的分析方法[J].高电压技术,2002,28(4):28-29. 被引量:15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部