期刊文献+

基于矩阵伪投影策略的频繁项集挖掘方法 被引量:8

Mining Frequent Itemsets Based on pseudo-Projection of Array
下载PDF
导出
摘要 挖掘频繁项集是数据挖掘应用中关键的问题。经典的FP-growth算法利用FP-tree有效的压缩了数据集的规模,但是在挖掘过程中需要反复递归构造条件FP-tree成为限制算法效率的瓶颈。本文通过将FP-tree映射成矩阵,通过在矩阵自身上进行伪投影得到条件模式阵,避免了递归构造FP-tree,从而节约了内存消耗和计算时间。 It is key point of data mining application mining frequent itemsets. Classic frequent itemsets mining algorithm FP-growth compresses the scale of dataset effectively using FP-tree structure, But it has own bottleneck that for getting complete fre- quent itemsets it need build conditional FP-tree recursively in the mining process. This paper proposes a new frequent itemsets mining algorithm that maps FP-tree structure into FP-array and mines upon it. In the mining process, this algorithm can avoid building conditional FP-tree. So, it saves time and memory very much .
作者 陈凯 冯全源
出处 《微计算机信息》 北大核心 2005年第11X期85-87,150,共4页 Control & Automation
基金 国家自然科学基金资助的项目 基金号:60371017 四川省学术和技术带头人资助项目
关键词 数据挖掘 关联规则 频繁项集 矩阵 data mining association rule frequent itemsets array
  • 相关文献

参考文献8

  • 1R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules [A]. In Proceeding of the 20th VLDB Conferencei [C], Santiago,Chile, 1994.
  • 2A. Silbersehatz, and A. Tuzhilin. What Make Patterns Interesting in Knowledge Diseovery Systems [J]. In IEEE Transaetion on Knowledge and Data Engineering, Dec. 1996.
  • 3J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation [A]. In Proceeding of ACM SIGMOD" 00 [C], May. 2000.
  • 4M. J. Zaki, and C. Hsiao. CHARM: An Efficient Alogrithm for Closed Itemset Mining [A]. In SDM" 02 [C], Apr. 2002.
  • 5L. Li, and F. Jin. A New Algorithm form Mining Frequent Pattern [A].Journal of Southwest Jiaotong University, May. 2002.
  • 6J. Han and M. Kamber. Data Mining: Concepts and Techniques [M].Morgan Kaufmann Publishers, San Francisco, CA, 2001.
  • 7宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 8王晓峰,王天然,赵越.一种自顶向下挖掘长频繁项的有效方法[J].计算机研究与发展,2004,41(1):148-155. 被引量:27

二级参考文献9

  • 1[1]R Agrawal, T Imielinski, A Swami. Mining association rules between sets of items in large databases. In: Peter Buneman, Sushil Ajodia eds. Proc of ACM SIGMOD Conf on Management of Data, New York: ACM Press, 1993. 207~216
  • 2[2]J Han, J Pei. Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations (Special Issue on Scalable Data Mining Algorithms), 2000, 2(2): 14~20
  • 3[3]J Han, J Pei, Y Yin. Mining frequent patterns without candidate generation, In: M Dunham, J Naughton, W Chen eds. Proc of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'00). Dallas, TX, New York: ACM Press, 2000. 1~12
  • 4[4]J Roberto, Jr Bayardo. Efficiently mining long patterns from databases. In: Ashutosh Tiwary, Boeing Co eds. Proc of the 1998 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'98), New York: ACM Press, 1998. 85~93
  • 5[5]D-I Lin, Z M Kedem. Pincer-Search: A new algorithm for discovering the maximum frequent set. In: Bertram Ludscher, Wolfgang May eds. Proc of the 6th European Conf on Extending database technology, Proceedings, Lecture Note in Computer 1377. Berlin: Springer 1998, 1998. 105~119
  • 6[6]Z Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. Holland: Kluwer Academic Publishers, 1991
  • 7[7]Hu Xiaohua. Knowledge discovery in database: An attribute-oriented rough set approach [Dissertation]. University of Regina, Canada, 1995
  • 8[8]Collections of data for developing, evaluating, and comparing learning methods. 2001. http://www.cs.toronto.edu/~delve/data/mushrooms/desc.html
  • 9路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献184

同被引文献44

  • 1阮幼林,李庆华,刘干.分布环境中的并行频繁模式挖掘算法[J].计算机工程与应用,2005,41(25):1-3. 被引量:3
  • 2郑启鹏,李秀,刘文煌,李兵.支持向量机在银行贷款客户分类中的应用研究[J].微计算机信息,2005,21(11X):68-70. 被引量:7
  • 3数据挖掘概念与技术,iawei Han Micheline Kamber著;范明,孟小峰等译.机械工业出版社
  • 4NET分布式编程-C#篇,OM BARNABY著,黎媛,王小锋等译.清华大学出版社
  • 5Jiawei Han, Micheline Kamber. Data Mining Concepts and Techniques[M].China Machine Press, 2001
  • 6W.Wang, J.Yang and P.Yu "Efficient mining of weighted association rules(WAR)", Proc. of the ACM SIGKDD Conf on Knowledge Discovery and Data Mining, 270-274, 2000.
  • 7Avi Silberschatz, Alexander Tuzhilin What Makes Patterns Interesting in Knowledge Discovery Systems
  • 8B.Shekar, Rajesh Natarajan A Framework for Evaluating Knowledge-Based lnterestingness of Association Rules Fuzzy Optimization and Decision Making, 3, 157-185,2004
  • 9Rakesh Agrawal, Ramakrishnan Srikant. Mining sequential pattern. ICDE,1995
  • 10S.D.Lee,David W.Cheung,Ben Kao. ls Sampling Useful in Data Mining? A Case in the Maintenance of Discovered Association Rules.

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部