摘要
挖掘频繁项集是数据挖掘应用中关键的问题。经典的FP-growth算法利用FP-tree有效的压缩了数据集的规模,但是在挖掘过程中需要反复递归构造条件FP-tree成为限制算法效率的瓶颈。本文通过将FP-tree映射成矩阵,通过在矩阵自身上进行伪投影得到条件模式阵,避免了递归构造FP-tree,从而节约了内存消耗和计算时间。
It is key point of data mining application mining frequent itemsets. Classic frequent itemsets mining algorithm FP-growth compresses the scale of dataset effectively using FP-tree structure, But it has own bottleneck that for getting complete fre- quent itemsets it need build conditional FP-tree recursively in the mining process. This paper proposes a new frequent itemsets mining algorithm that maps FP-tree structure into FP-array and mines upon it. In the mining process, this algorithm can avoid building conditional FP-tree. So, it saves time and memory very much .
出处
《微计算机信息》
北大核心
2005年第11X期85-87,150,共4页
Control & Automation
基金
国家自然科学基金资助的项目
基金号:60371017
四川省学术和技术带头人资助项目
关键词
数据挖掘
关联规则
频繁项集
矩阵
data mining
association rule
frequent itemsets
array