期刊文献+

一种高效的小波变换去噪方法 被引量:3

A High-powered Image Denoising Method Based on Wavelet Transform
下载PDF
导出
摘要 小波变换用于图像去噪的思想已经提出了很久,然而前人所提出的这种方法对于去噪的效果并不理想。图 像经这种小波变换去噪后,纹理特征被弱化,图像的边缘出现较明显的Gibbs效应,图像变模糊。针对以上问题,本文提 出了一种高效的小波变换去噪方法(HPID)。此去噪方法是基于小波变换的新方法,与经典的小波去噪方法不同,该方法不 依赖图像大小来判定去噪门限,不需方差信息,且适用于不同类型噪声。采用本方法处理的噪声图像与经典方法相比,不 仅消除了Gibbs效应,而且图像的边缘信息更清晰,纹理特征增强,去噪能力得到改善。 Image denoising with wavelet transform has come into use for a long time. However, the effect of this method is not as good as we desired in image denoising. With this method, texture characters of images are weakening, Gibbs Effect appears at edges of images and images is blurred. To solve these problems, a high-powered image denoising method based on wavelet transform is proposed, called HPID. This method is a new one based on wavelet transform. In this method, unlike classical wavelet denoising method, threshold doesn't depend on size of images and deviation is no more required. Moreover it is the same with all kinds of noise. Comparing with classical wavelet denoising method, HPID eliminates Gibbs effect, makes edges more clear, enhances texture characters and improve the ability of denoising.
出处 《信号处理》 CSCD 北大核心 2005年第6期656-658,614,共4页 Journal of Signal Processing
关键词 小波变换 去噪 边缘 Gibbs效应 wavelet transform denoising edges gibbs effect
  • 相关文献

参考文献7

  • 1王保平,范九伦,谢维信.基于直方图的图象去噪滤波器[J].中国图象图形学报(A辑),2003,8(7):748-752. 被引量:7
  • 2Donoho D L,Johnstone I M..Adapting to unknown smoothness via wavelet shrinkage[J].J.ASA,1995,90:1200.1223.
  • 3Mallat S.A theory for mulfiresolution decomposition:the wavelet represention[J].IEEE Trans on Patern.Anal.Mach.Intell.,1989,11(7):674-693.
  • 4Mallat S.Multifrequency Channel Decompositions of Images and Wavelet Models[J].IEEE Trans.on ASSP, 1989;37(12):2091-2110.
  • 5Donoho D L.De-noising via soft-thresholding[J],IEEE Trans.on Info.Theo.,1992,41(3):613-627.
  • 6费佩燕,郭宝龙,章正宇.基于二进小波变换的图像去噪技术研究[J].西安电子科技大学学报,2003,30(4):492-496. 被引量:13
  • 7Mallat.S and Hwang Wen Liang.Singularity Detection and Processing with Wavelets[J].IEEE Trans.on Information Theory,1992,38(2):617-643.

二级参考文献17

  • 1郭宝龙,郭雷.用扩散和集中神经网络区分图形与背景[J].科学通报,1994,39(19):1805-1808. 被引量:5
  • 2郭宝龙,郭雷.视觉运动计算的新方法[J].西安电子科技大学学报,1994,21(4):457-463. 被引量:11
  • 3[1]Wang J H, Lin L D. An improved median filter using minmax algorithm for image processing[J]. Electronics Letters, 1997,33(16): 1362~1363.
  • 4[2]Brownrigg D R K. The weighted median filter [J].Communcation Association for Computing Machinery, 1984, 27(8) : 807~818.
  • 5[3]Arce G R, Foster R E. Detail preserving ranked-order based filters for image processing[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1989, 37(1): 83~89.
  • 6[4]Sun T, Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters, 1994, 15(4): 341~347.
  • 7[5]Yu P, Lee C S. Adaptive fuzzy median filter [A]. In:Proceedings International Symposium Artificial Neural Networks[C], London: Elsevier Science Publishers, 1993:318~362.
  • 8[6]Wang J H, Yu M D. Image smoothing by adaptive fuzzy optimal filter[A]. In:Proceedings of the IEEE International Conference System, Man and Cybernetics[C], New York: IEEE Computer Society Press, 1995: 845 ~ 848.
  • 9[7]Lee C S, Kuo Y H, Yu P T. Weighted fuzzy mean filters for image processing[J]. Fuzzy Sets System, 1997, 89 (2): 157~180.
  • 10Donoho D L, Johnstone I M. Ideal Spatial Adaptation by Wavelet Shrinkage[J]. Biometrika, 1994, 81(2): 425-455.

共引文献18

同被引文献10

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部