期刊文献+

支持向量机方法识别储集层流体性质 被引量:8

Reservoir Fluid Property Identification with Support Vector Machine Method
下载PDF
导出
摘要 在储集层流体识别中首次引入了支持向量机(SVM)方法,对测井得到的各种测量参数和综合解释参数与油、气、水等流体之间的复杂关系进行研究,借助于支持向量机方法,建立了测井参数识别油、气、水等储集层流体的识别模型。实际应用效果表明,支持向量机方法识别储集层流体类型是一种比较切实可行的方法,提高了测井解释油气水的精度,为储集层流体识别提供了一种简单可靠、识别精度高的新方法。 The Support Vector Machine (SVM) Method is first introduced into reservoir fluid property identification, by which the models for identifying oil, gas and water are developed through study of the complex relations between measured logging data and comprehensively interpreted parameters about reservoir fluids. The applied results indicate that SVM method is a feasible, effective and higher accurate way for well logging interpretation of reservoir fluids as a new, simple and reliable method with high accuracy.
出处 《新疆石油地质》 CAS CSCD 北大核心 2005年第6期675-677,共3页 Xinjiang Petroleum Geology
关键词 支持向量机 流体 识别 测井解释 support vector machine fluid identification well logging interpretation
  • 相关文献

参考文献3

  • 1刘洪,钟大康,李文华,易俊,洪志琼.支持向量机算法在地质录井中的应用[J].新疆石油地质,2004,25(5):535-537. 被引量:4
  • 2Vapic V. An overview of statistical learning theory [ J ]. IEEE Transaction On Neural Networks, 1999,10(5 ): 988-999.
  • 3Vapnik V N. The nature of statistical learning theory(Second Edition)[ M ]. New York: Spinger-Verlag, 1999.

二级参考文献2

  • 1[1]Vapnik V N.统计学习理论的本质(第二版)(张学工,译)[M].北京:清华大学出版社,2000.
  • 2[2]Vapic V. An Overview of Statistical Learning Theory [J].IEEEE Transaction on Neural Netowrks. 1999,10 (5): 988-999.

共引文献3

同被引文献116

引证文献8

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部