期刊文献+

甲烷水合物(可燃冰)结构-I的分子间势能的量子化学研究 被引量:2

Quantum Chemical Study of Molecular Potential Energies in Methane Hydrate Structure-I Unit Cell
下载PDF
导出
摘要 采用Hartree-Fork,4种DFT(BLYP,B3LYP,MPW1PW91,SVWN5)和MP2方法研究了甲烷水合物结构-Ⅰ的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST2模型.水分子间的氢键能Ebb(l)和甲烷-水分子间的范德华能Evdw(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用MP2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离Ro-o=0.280 nm和碳-氧距离Rc-o=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,MP2)都表明,甲烷水合物结构-Ⅰ是一个由超强氢键(30~36 kJ/mol)组成的稳定结构,其氢键能远大于水分子二聚体和冰Ⅰ4晶格中的氢键能((-22.6±2.9)kJ/mol和(-21.7±0.5)kJ/mol).这些数据为气体水合物的Lennand-Jones和Kihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟. Hartree-Fock, DFT (BLYP, B3LYP, MPWIPW91, and SVWNS) and MP2 methods are used to study the intermolecular potential functions for the unit cell of methane hydrate structure-Ⅰ. The unit cell is treated as a regular dodecahedron including 20 water molecules and a methane molecule in the center. The geometry of methane is optimized by ab initio HF/6-31G(d, p) and the water molecules take the geometry of an ST2 model. The water-water hydrogen bond potential Ebb(l) and water-methane van der Waals potential Evdw (1) as functions of the side length l are calculated, keeping the molecular geometries of water and methane fixed. Then MP2 calculations are performed at several key points. In all calculations we use the 6-31G(d,p) basis set. Basis set superposition error (BSSE) is corrected and the upper and low- er limits of BSSE are determined for the water-water hydrogen bond energy. The oxygen-oxygen distance Ro o : 0. 280 nm, and the carbon-oxygen distance Rc-o = 0. 392 nm obtained by BSSE-corrected B3LYP are closer to the experimental values 0. 282 nm and 0. 395 nm, comparing with other methods. The results indicate that the water-water pair hydrogen bond energy (30-36 kJ/mol) in gas hydrate structure-Ⅰ is stronger than the hydrogen bond energy (-22. 6±2.9) kJ/mol in the water dimer (H2O)2 and (21. 7± 0.5) kJ/mol in hexagonal ice, and the dodecahedron cell is a stable unit. These molecular interaction potentials provide a solid basis for the derivation of parameters in the Lennard-Jones 6-12 and Kihara poten tials, which are useful in molecular dynamics simulations of gas hydrates.
出处 《天津师范大学学报(自然科学版)》 CAS 2005年第4期1-8,共8页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(20373048) 天津市科委基金资助项目(023618211)
关键词 甲烷水合物 可燃冰 势能函数 量子化学 基组重叠误差 methane hydrate clathrate structure-Ⅰ potential function quantum chemistry BSSE
  • 相关文献

参考文献44

  • 1Kvenvolden K A. Gas hydrates-geological perspective and global change[J]. Chemical Geology, 1996,71: 41.
  • 2Kvenvolden K A. Effects of hydrate formation on gas composition: A physical chemistry and environmental science question[J]. Annals of the New York Academy of Science, 2000,912: 17.
  • 3Cao Z, Tester J W, Trout B L. A novel approach to the solvation of methane in water[J]. J Chem Phys, 2001,115: 6.
  • 4Sloan E D. Gas hydrates: Review of physical/chemical properties[J]. Energy &Fuels, 1998,12: 191.
  • 5Fowler R H, Guggenheim E A. Statistical Thermodynamics [M]. Cambridge:Cambridge University Press, 1952.
  • 6van der Waals J H, Platteeuw J C. The ability of small molecules to form clathrate hydrates of structure Ⅱ[J]. Adv Chem Phys, 1959,2: 1.
  • 7Sparks K A, Tester J W, Cao Z, et al. Configurational properties of water clathrates: Monte Carlo and multidimensional integration versus the Lennard-Jones and Devonshire Approximation[J]. Trout J Phys Chem, 1999,B 103:6 300.
  • 8John V T, Papadopoulos K D, Holder G D. A generalizedmodel for predicting equilibrium conditions for gas hydrates [J]. AIChE J, 1985,31: 252.
  • 9John V T, Holder G D. Hydrate research-from correlations to a knowledge-based discipline: The importance of structure [J]. JPhysChem, 1985,89:3 279.
  • 10Sloan E D, Jr. Clathrate hydrates of natural gases (2nd ed)[M]. Marcel Dekker, Monticello:1998.

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部