期刊文献+

可满足公式到极小不可满足公式MU(1)的扩张复杂性(英文)

The Complexity of Extending a Formula to a MU(1) formula
下载PDF
导出
摘要 可满足合取范式(CNF)公式F到极小不可满足公式MU(1)的扩张是,对给定的CNF公式F,是否存在一个公式G满足条件var(G)var(F)并使得F+G∈MU(1)。Horn公式到MU(1)公式的扩张问题可在多项式时间内解决,但对一般CNF公式F的扩张问题,至今尚未解决。这里我们将给出一个多项式时间的算法解决这一问题。 The extension problem is the question that for a satisfiable CNF formula F whether there exist a formula G such that F + G ∈ MU( 1 ) with var(G) lohtain in var(F). It is known that the problem of extending a Horn formula into a MU( 1 ) formula is solvable in polynomial time. But for a general satisfiable CNF formula F, the extension problem is still open. In this paper we will present a algorithm which the complexity is polynomial time of O (n^4) to solve such a question.
出处 《贵州大学学报(自然科学版)》 2005年第4期348-358,共11页 Journal of Guizhou University:Natural Sciences
关键词 变量出现 极小不可满足公式 公式的扩张 occurrences, minimal unsatisfiable formulas, extending of formula
  • 相关文献

参考文献10

  • 1C. R. Tovey. A simplified NP-complete satisfiability problem[J]. Discrete Applied Mathematics, ( 1984), pp. 85 -89.
  • 2R. Aharoni. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas [J]. Journal of Combinatorial Theory, Series A 43(1996), pp. 196-204.
  • 3G. Davydov, 1. Davydova, H. Kleine Brining. An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF[J]. Annals of Mathematics and Artifcial Intelligence, (1998), pp. 229 - 245.
  • 4H. Fleischner, O. Kullmann, S. Szeider. Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference[J].Theoretical Computer Science, vol. 289, (2002), pp. 503 -516.
  • 5H. Kleine Brining. On subclasses of minimal unsatisfiable formulas[J]. Discrete Applied Mathematics, (2000). pp. 83 -98.
  • 6H. Kleine Brining, Xishun Zhao, Polynomial time algorithms for computing a representation for minimal unsatisfiable formulas with fixed deficiency[J]. Information Processing Letters, (2002), pp. 147 - 151.
  • 7H. Kleine Brining, T. Lettman. Propositional Logic: Deduction and Algorithms[M]. Cambridge University Press, 1999.
  • 8H. Kleine Brining, Daoyun Xu. The complexity of homomorphisms and renamings for minimal unsatisfiable formulas [R]. Conference SAT2002,Cincinati.
  • 9R. lmpagilazzo, R. Paturi. Complexity of k-SAT, Proceedings of Fourteenth Annual IEEE Conference on Computational Complexity, May 4 - 6(1999), pp. 237-240.
  • 10H. Kleine Brining, Xishun Zhao. Extension and Equlvalenee Problems for Clause Minimal Formulas.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部