期刊文献+

FGMM-MRF层次模型在图像分割中的应用 被引量:8

Application of FGMM-MRF Hierarchical Model to Image Segmentation
下载PDF
导出
摘要 为了更好地反映图像的区域结构,在高层次标记图像中,区域内部用各向同性的MRF建模,区域的边界用各向异性的MRF来建模;在低层次灰度图像中,用FGMM来描述待分割图像的概率分布.采用Bayes方法,根据标记图像的后验分布所对应的FGMMMRF模型的条件概率,用ICM局部优化算法获得MAP准则下的分割图像.用模拟图像和MR图像进行实验,区域的边界和整体属性具有较好的视觉效果. In order to accurately describe the region structure of a higher-level label image, the interior region is modeled by isotropic Markov random field (MRF), while the boundary is modeled by anisotropic MRF. For lower-level gray image, the prior distribution of segmentation image is modeled by finite general mixture model (FGMM). According to the posterior distribution of the label image conditioned on the gray image corresponding to the conditional probability of FGMM-MRF model, the Bayes formulation and the local iterated conditional modes (ICM) optimization algorithm are adopted, and based on the MAP (maximum a posterior) criterion the image segmentation result is obtained. Numerical simulations demonstrate that the whole property and the boundary of image area show better vision effect with a test to synthetic image and real MR brain image.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第12期2659-2664,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 有限通用混合模型-马尔可夫随机场层次模型 迭代条件模式优化算法 MAP准则 图像分割 FGMM-MRF hierarchical model ICM optimization algorithm MAP criterion image segmentation
  • 相关文献

参考文献17

  • 1Zhang J, Modestino J M. A model fitting approach to cluster validity with application to stochastic model-based image segmentation [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1990, 12(10): 1009~1016.
  • 2赵明,李娜,陈纯.采用统计推断的自动视频对象分割[J].计算机辅助设计与图形学学报,2003,15(3):318-323. 被引量:17
  • 3Liang Z, MacFall J R. Parameter estimation and tissue segmentation from multispectral MR images [J]. IEEE Transactions on Medical Imaging, 1994, 13(3): 441~449.
  • 4Li S Z. Markov Random Field Modeling in Computer Vision[M]. Tokyo: Springer-Verlag, 1995.
  • 5Zhang Y Y. Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm [J]. IEEE Transactions on Medical Imaging, 2001,20(1): 15~22.
  • 6Wang Jia-Ping. Stochastic relaxation on partitions with connected components and its application to image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(6): 619~636.
  • 7Wang Yue, Adali T, Kung Sun-Yuan, et al. Quantification and segmentation of brain tissues from MR images: A probabilistic neural network approach [J]. IEEE Transactions on Image Processing, 1998, 7(8): 1165~1181.
  • 8Chan Michael, Levitan Emanuel, Herman Gabor T. Imagemodeling Gibbs distributions for Bayesian restoration [A]. In:Proceedings of the IEEE Southwest Symposium, Mexico,1994. 21~24.
  • 9Winkler Gerhard. Image Analysis, Random Fields and Dynamic Monte Carlo Methods [M]. Berlin: Springer-Verlag, 1995. 1~160.
  • 10Comer Mary L, Delp Edward J. The EM/MPM algorithm for segmentation of textured images: Analysis and further experimental result [J]. IEEE Transactions on Image Processing, 2000, 9(10): 1731~1744.

二级参考文献9

  • 1盛骤 谢世千.概率论与数理统计(第2版)[M].北京:高等教育出版社,1989.59.
  • 2MPEG Video and SNHC Groups. Committee draft of MPEG-4, part 2, 14496-2[R]. Fribourg, Switzerland: ISO/IEC JTC/SC29/WG11/N1902, 1997
  • 3M. Thomas, N N King. Automatic segmentation of moving objects for video object plane generation[J]. IEEE Trans actions on Circuits and System for Video Technology, 1998, 8(5): 525~538
  • 4T Horprasert, D Harwood, L S Davis. A statistical approach for real-time robust background subtraction and shadow detection[OL]. http://www.eecs.lehigh.edu/FRAME/Horprasert/index.html, 1999
  • 5C Wren, et al. PFinder: Real-Time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780~785
  • 6A Francois, G Medioni. Adaptive color background modeling for real-time segmentation of video streams[A]. In: Proceedings of International on Imaging Science, Systems, and Technology, Las Vegas, NA, 1999. 227~232
  • 7C Ridder, O Munkelt, H Kirchner. Adaptive background estimation and foreground detection using Kalman-filtering[A]. In: Proceedings of International Conference on Recent Advances in Mechanotronics, Istanbul, Turkey, 1995.193~199
  • 8Jae-Chang Shim, Chitra Dorai. A generalized region labeling algorithm for image coding, restoration, and segmentation[A]. In: Proceedings of International Conference on Image Processing, Kobe, 1999. 46~50
  • 9季白杨,陈纯,钱英.视频分割技术的发展[J].计算机研究与发展,2001,38(1):36-42. 被引量:36

共引文献16

同被引文献122

引证文献8

二级引证文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部