期刊文献+

Bonhoeffer-van der Pol方程中双吸引子的混沌控制 被引量:1

CONTROL OF DOUBLE CHAOTIC ATTRACTORS IN BONHOEFFER-VAN DER POL EQUATION
下载PDF
导出
摘要 基于延时反馈混沌控制方法和相空间压缩法,提出一种改进的延时反馈混沌控制方法。该方法不仅可用于单个吸引子混沌系统的控制,而且由于克服了Pyragas控制方法的不能简便地将混沌系统稳定到嵌入在不同混沌吸引子内周期轨道的不足,也可以用于多个混沌吸引子混沌系统的控制。以Bonhoeffer-van der Pol系统为例,数值验证此改进方法用于两个混沌吸引子系统控制的有效性,结果表明,在延时反馈控制中增加适当的相空间限制器,可以快捷地将系统稳定在期望的周期轨道上。 According to delayed feedback control method and phase space compression method, an improved method of delayed feedback scheme is proposed, which can be applied to control chaostic systems not only with one atteactor,but also with mutil-attractors, because of it overcomes Pyragas' s shortcoming of no stabilizing the chaotic system into a dirsed orbit embeded in different attractor expediently. Take Bonhoeffer-van der Pol system as example, validity of the method is verified numerically for controlling two-attractors. It is indicated that the improved technique can stabilize a chaotic system into a desired periodic orbit simply, by adding an appropriate phase space limiter to the delayed feedback control.
出处 《机械强度》 CAS CSCD 北大核心 2005年第6期740-743,共4页 Journal of Mechanical Strength
基金 国家自然科学重大基金项目资助(19990510) 河北科技大学校立基金资助(2003XL47)
关键词 延时自反馈 混沌控制 限制器 吸引子 Delayed feedback control Chaos control Limiter Attractor
  • 相关文献

参考文献8

  • 1Pyragas K. Continuous control of chaos by self-controlling feedback. Phys. Lett., A, 1992, 170: 421-428.
  • 2罗晓曙.利用相空间压缩实现混沌与超混沌控制[J].物理学报,1999,48(3):402-407. 被引量:33
  • 3Wang W. Bifurcations and chaos of the Bonhoeffer-van der Pol model. J. Phys. A: Math. Gen. 1989,22(13): L627-L632.
  • 4Rajasekar S, Lakshmanan M. Period-doubling bifurcations, chaos, phase-locking and devil's staircase in a Bonhoeffer-van der Pol oscillator. Physica D, 1988,32(1): 146-152.
  • 5Rajasekar S, Parthasarathy S, Lakshmanan M. Prediction of horseshoe chaos in BVP and DVP oscillator. Chaos, Solitons and Fractals, 1992, 2(3):271-280.
  • 6Rajasekar S, Lakshmanan M. Algorithms for controlling chaotic motion: Application for the BVP oscillator. Physica D, 1993, 67(1-3): 282-300.
  • 7Rajasekar S. Controlling unstable periodic orbits in a Bonhoeffer-van der Pol equation. Chaos Solit. Fract., 1995,5(11):2 135-2 144.
  • 8梁建术,陈予恕,等.一种改进的延时反馈混沌控制方法[J].非线性动力学学报,2002,9(1):88-92. 被引量:4

二级参考文献2

共引文献35

同被引文献14

  • 1MAUSBACH T,KLLNGER T,PIEL A,et al.Continuous control of ionization wave chaos by spatially derived feedback signals[J].Phys Lett A,1997,228(6):373-377.
  • 2PARMANANDA P,MADRIGAL R,Rivera M,et al.Stabilization of unstable steady state and periodic orbits in an electrochemical system using delayed feedback control[J].Phys Rev E,1999,59(5):5 266-5 271.
  • 3HALL K,CHRISTINI D J,TREMBLAY M,et al.Dynamic control of cardiac alternans[J].Phys Rev Let,1997,78(23):4 518-4 521.
  • 4KITTEL A,PARISI J,PYRAGAS K.Delayed feedback control of chaos by self-adapted delay time[J].Phys Lett A,1995,198(5-6):433-436.
  • 5ARECCHI F T,BASTI S,BOCCALETTI S,et al.Adaptive recognition of a chaotic dynamics[J].Europhys Leet,1994,26(3):327-333.
  • 6BOCCALETTI S,ARECCHI F T.Adaptive control of chaos[J].Europhys Leet,1995,31(1):127-132.
  • 7RAMESH M,NARAYANAN S.Controlling chaotic motion in a two-dimensional airfoil using time-delayed feedback[J].Journal of Sound and Vibration,2001,239(5):1 037-1 049.
  • 8SHINBROT T,GREBOGI C,OTT E,et al.Using small perturbation to control chaos[J].Nature (London),1993,36(3):411-417.
  • 9PYRAGAS K.Continuous control of chaos by self-controlling feedback[J].Phys Lett A,1992,170(6):421-428.
  • 10PYRAGAS K,TAMASIAVICIUS A.Experimental control of chaos by delayed self-controlling feedback[J].Phys Lett A,1993,180(2):99-102.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部