期刊文献+

二氢黄酮类化合物的核磁共振碳谱模拟研究 被引量:4

Calculation of ^(13)C Chemical Shifts of Dihydroflavone Using a Model Based on Atomic Electronegativity Interaction Vector
下载PDF
导出
摘要 采用表征分子内部化学微环境的结构描述子原子电负性作用矢量(Atomic Electron-egativity Interaction Vector,AEIV)对255个共振碳原子进行了结构表征,应用多元线性回归技术建立了结构描述子AEIV与这些碳原子的13C NMR化学位移的定量相关模型.该定量结构谱图关系(定量构谱关系/QSSR)模型的复相关系数达到RMM=0.915,标准偏差为SDMM=14.879.采用留一法交互检验的结果为RCV=0.909,SDCV=15.324.结果表明,模型具有良好的估计力和稳定性. In this study, atomic electro-negativity interaction vector (AEIV) and atomic state index (ASI) were formulated to describe the chemical environment and atomic state of 255 carbon atoms. Using the multiple linear regression (MLR) technique, a quantitative model was established to define the relationship between the ^13C NMR chemical shifts and the AEIV/ASI of these atoms. The correlation coefficients (R) and standard deviation (SD) of molecular modeling (MM) were RMM =0.915 and SDMM = 14.879 ppm, respectively. Leave-one-out (LOO) cross-validation (CV) technique was applied to validate the prediction capability of the model using an external test set, and the Roy and SDcv values were found to be 0.909 and 15.324 ppm, respectively. The resuits indicate that the model established has favorable predictive capability and satisfactory stability in estimation.
出处 《波谱学杂志》 CAS CSCD 北大核心 2005年第4期383-389,共7页 Chinese Journal of Magnetic Resonance
基金 重庆市应用基础项目(01-3-6) 国家春晖计划教育部启动基金(99-1-3/8) 霍英东基金(98-8-7) 重庆大学自主创新基金(04-10-10)资助项目
关键词 ^13C NMR波谱模拟 原子电负性作用矢量(AEIV) 二氢黄酮类化合物 ^13C NMR atomic electro-negativity interaction vector, atomic state index, dihydroflavone, chemical shift
  • 相关文献

参考文献9

  • 1Beger R D, Freeman J P, Lay Jr J O, et al. Use of ^13C NMR Spectrometric Data to Produce a Predictive Model of Estrogen Receptor Binding Activity[J]. J Chem Inf Comput Sci, 2001, 41(1):219-224.
  • 2Beger R D, Bolton P H. Protein φ and ψDihedrals Restraints Determined from Multidimensional Hypersurface Correlations of Backbone Chemical Shifts and Their Use in the Determination of Protein Tertiary Structures[J].J Biomol NMR, 1997, 10:129-124.
  • 3Wishart D S, Sykes B D. Chemical shifts as a tool for structure determination[J]. Methods Enzymol, 1994, 239:363-392.
  • 4Kvasnicka V. An Application of Neural Networks in Chemistry. Prediction of ^13C NMR Chemical shifts[J]. J Chem Inf Comput Sci, 1982, 22:48-57.
  • 5Grant D M, Paul E G. Carbon-13 magnetic resonance Ⅱ. Chemical shift data for the alkanes[J]. J Am Chem Soc, 1964, 86:2984-2990.
  • 6Lindeman L P, Adams J Q. Carbon-13 nuclear magnetic shifts for the resonance spectrometry. Chemical shifts for the paraffins through C9[J]. Anal Chem, 1971, 43:1245-1252.
  • 7刘树深,夏之宁,余般梅,李志良.无环醇原子电距矢量及核磁共振碳谱化学位移模拟[J].波谱学杂志,1999,16(5):429-440. 被引量:21
  • 8DingDe-quan(丁德泉) YangJun-shan(杨峻山) XieJing-xi(谢晶曦).Handbook of Analytical Chemistry,Section 5:Nuclear Magnetic Resonance(分析化学手册.第5分册)[M].Beijiang(北京):Chemistry Industry Press(化学工业出版社),1989.734-735.
  • 9Hall L H, Kier L B. Electrotopological state index for atom types:a novel combination of electronic, topologi cal, and valence state information[J]. J Chem Inf Comput Sci, 1995, 35:1039-1045.

二级参考文献3

共引文献20

同被引文献30

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部