期刊文献+

高光谱遥感影像矿物自动识别与应用 被引量:10

MINERAL AUTO-IDENTIFICATION BASED ON HYPERSPECTRAL IMAGING DATA AND ITS APPLICATION
下载PDF
导出
摘要 在对矿物光谱特征理解与归纳的基础之上,对矿物光谱特征进行知识化表达,利用数理逻辑和一定的判别规则实现对高光谱遥感影像矿物的自动识别与批量化信息提取。在ENVI平台上,利用IDL语言开发了高光谱遥感影像矿物分层自动识别模块(M ineral Auto-identification Modu le Based on Spectral Identification Tree:MAIM-SIT)。该模块已经在新疆东天山哈密地区利用HyM ap数据、西藏驱龙地区利用Hyperion数据以及美国Cuprite地区利用AVIR IS数据成功地进行了矿物识别,可识别的矿物或矿物组合可达10种以上,基本实现了高光谱矿物信息提取的智能化与批处理能力。 Spectral knowledge acquired through the understanding of mineral spectral features was used to perform automatic extraction of mineral type information based on mathematical, logic and some other decision rules in the hyperspectral imaging field. In this paper, a mineral auto - identification module for hyperspectral imaging data ( MAIM - HID) has been designed by IDL language on ENVI software. It has intelligence and batch processing capacity so that it can identify and extract as many as over 10 types of minerals or mineral groups directly. This module is applicable to aero Hymap and AVIRIS data as well as satellite Hyperion data. It already identified and discriminated some minerals in East Tianshan Mountain of Xinjiang and Qulong area of Tibet in China and Cuprite in U.S.A.
出处 《国土资源遥感》 CSCD 2005年第4期28-31,i0004,共5页 Remote Sensing for Land & Resources
基金 国土资源部"百名优秀青年科技人才计划" 国家自然科学基金(40201034) 国土资源部科研项目(2002206)资助
关键词 高光谱遥感 矿物自动识别 矿物光谱数据 IDL Hyperspectral imaging data Mineral auto- identification module Mineral spectra IDL
  • 相关文献

参考文献7

  • 1[1]Green R O, Eastwood M L, et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer(AVIRIS)[J].Remote Sens. Environ., 1998,65:227-248.
  • 2甘甫平,王润生,马蔼乃.基于特征谱带的高光谱遥感矿物谱系识别[J].地学前缘,2003,10(2):445-454. 被引量:105
  • 3[4]USGS,USGS Digital Spectral Library[EB/OL].http://speclab.cr.usgs.gov/spectral-lib.html
  • 4[5]Gan F, Wang R, Ma A. Spectral Identification Tree (SIT) for Mineral Extraction Using AVIRIS Data[C].Proceedings of SPIE, 2003,4897:203-210.
  • 5[6]甘甫平. 高光谱图谱信息及其应用[R].北京大学博士后出站报告,2004.
  • 6[7]Clark R N, King T V V, Klejwa M, et al. High Spectral Resolution Reflectance Spectroscopy of Minerals[J].J. Geophys Res,1990, 95, 12653-12680.
  • 7慕纪录.新疆哈密黄山铜镍矿床中浅富矿体特征及形成机制[J].矿物岩石,1996,16(1):58-67. 被引量:20

二级参考文献34

  • 1王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 2王润民,内生成矿作用,1988年
  • 3郑明华,现代成矿学导论,1987年
  • 4KRUSE F A. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the Northern Grapevine Mountains, Nevada, and California[J]. Remote Sens Environ, 1988,24:31-51.
  • 5CROWLEY J K, BRICKEY D W, ROWAM L C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images[J]. Remote Sens Environ, 1989,29:121-134.
  • 6dE JONG S M. Imaging spectrometry for monitoring tree damage caused by volcanic activity in the Long Valley Caldera, California[J]. ITC Journal, 1998, 1: 1-10.
  • 7LONGHI I, SCAVETTI M, CHIARI R, et al. Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectral in the 0.4~2.5 μm interval: a tool for hyperspectral data interpretation[J]. Int J Remote Sensing, 2001,22(18):3763-3782.
  • 8BAUGH W M, KRUSE F A, WILLIAM W, et al. Quantitative geochemical mapping of ammonium minerals in the Southern Cedar Mountains, Nevada, using the airborne visible/infrared imaging spectrometer(AVIRIS)[J].Remote Sens Environ, 1998, 65:292-308.
  • 9FENSTERMAKER L K, MILLER J R. Identification of Fluvially redistributed mill tailings using high spectral resolution aircraft data[J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(8):989-995.
  • 10BEN-DOR E, KRUSE F A. Surface mineral mapping of Makhtesh Ramon Negev, Israel using GER 63 channel scanner data[J]. Int J Renote sensing, 1995,16(8):3529-3553.

共引文献123

同被引文献210

引证文献10

二级引证文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部