期刊文献+

不具单调性的均衡系统问题的解的存在性 被引量:2

Existence of Solutions to Systems of Equilibrium Problems Without Monotonicity
下载PDF
导出
摘要 该文引入并研究了一类不具单调性的均衡系统问题.利用Brouwer不定点定理,在有限维空间下得到了均衡系统问题的解的存在性.在无限维情形,通过引入函数族的(S)+-条件,证明了基于(S)+-条件下的均衡系统问题的解的存在性. In this paper, the authors introduce and study systems of equilibrium problems without monotonicity. By using Brouwer fixed point theorem, the authors obtain an existence theorem in the setting of finite dimensional spaces. In the case of infinite dimensional spaces, the authors introduce the definition of (S)+ condition for a family of functions and prove the existence of solutions to systems of equilibrium problems based on (S)+ conditions.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2005年第6期763-769,共7页 Acta Mathematica Scientia
基金 四川省学术带头人培养基金资助
关键词 均衡系统 变分不等式系统 (S)+-条件 存在性 System of equilibrium problems System of variational inequalities (S)+ con-dition Existence.
  • 相关文献

参考文献20

  • 1Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequalities. Bull Austral Math Soc, 1999, 59(3): 433-442.
  • 2Ansari Q H, Yao J C. Systems of generalized variational inequalities and their applications. Appl Anal, 2000,76(3-4) :203-217.
  • 3Bianchi M, Hadjisavvas N, Schaible S. Vector equilibrium problems with generalized monotone bifunctions. J Optim Theory Appl, 1997, 92:527-542.
  • 4Bianehi M, Pini R. A note on equilibrium problems with properly quasimonotone bifunctions. J Global Optim,2001, 20:67-76.
  • 5Bianchi M, Schaible S. Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl, 1996,90:31-43.
  • 6Browder F E. Pseudo-monotone operators and direct method of the calculus of variations. Archive for Rational Mechanic and Analysis, 1970, 38:268-277.
  • 7Browder F E. Fixed-point theory and nonlinear problems. Bull Amer Math Soc, 1983, 9:1-39.
  • 8Chadli O, Chbani Z, Riahi H. Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J Optim Theory Appl, 2000, 105: 299- 323.
  • 9Chadli O, Wong N C, Yao J C. Equilibrium problems with applications to eigenvalue problems. J Optim Theory Appl, 2003, 117(2):245-266.
  • 10Fu J Y. Generalized vector quasi-equilibrium problems. Math Methods Oper Research, 2000, 52:57-64.

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部