期刊文献+

靶流形为齐次流形的弱次椭圆Q-调和映射的正则性

Regularity of Subelliptic Q-Harmonic Maps into Homogeneous Manifolds
下载PDF
导出
摘要 该文证明了靶流形为齐次流形的弱次椭圆Q-调和映射是内部正则的,这里Q是定义域的齐次维数.这一结果推广了Hajlasz和Strzelecki的相应结果[2].作为推论得到了靶流形为齐次流形的p维p-调和映射的正则性[12]. In this paper, the author proves that weak subelliptic Q-harmonic maps into manifolds with symmetry are regular where Q is the homogeneous dimension of the domain. This generalizes the Hajlasz and Strzelecki's results of . As a consequence, the author obtains the regularity of p-harmonic maps from p dimensional manifolds into homogeneous spaces, which is proved by T. Toro and C. Wang in .
作者 周振荣
出处 《数学物理学报(A辑)》 CSCD 北大核心 2005年第6期799-805,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(10371047 10571068)资助
关键词 次椭圆 对称流形 齐次维数 映射 正则性 Subelliptic Manifold with symmetry Homogeneous dimension.
  • 相关文献

参考文献1

二级参考文献9

  • 1Chen B Y. A report on submanifolds of finite type. Soochow J Math, 1996, 22(2): 117-337
  • 2Chen B Y, Morvan J M, Nore T. Energy,tension and finte type maps. Kodai Math J, 1986, 9:406-418
  • 3Chern S S, Goldberg S I. On the volume decreasing property of a class of real harmonic mappings. Amer J Math, 1975, 97(1): 133-147
  • 4Chern S S, doCarmo M, Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length. Funct Anal Rel, Fields, 1970. 59-75
  • 5Eells J, Lemaire L. Selected topics in harmonic maps. Expository Lectures from the CBMS Regional conference held at Tulance Univ, Dec. 1980. 15-19
  • 6Eells J, Sampson J. Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 85:109-160
  • 7Ros A. Eigenvalue inequalities for minimal submanifolds and P-manifolds. Math Z, 1984,187:393-404
  • 8Ruh E A, Vilms J. The tension field of the Gauss map. TYan Amer Math Soc, 1970,149:569-573
  • 9Takahashi T. Minimal immersions of Riemannian manifolds. J Math Soc Japan, 1966,18(4): 380-385

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部