期刊文献+

Kinetics Study on the Exothermic Decomposition Reaction of [Cd(CHZ)3](ClO4)2 被引量:2

Kinetics Study on the Exothermic Decomposition Reaction of [Cd(CHZ)3](ClO4)2
原文传递
导出
摘要 The Temperature-jump/FTIR (T-jump/FTIR) spectroscopy was introduced to resolve the decomposition kinetics parameters of [Cd(CHZ)3](ClO4)2 (CdCP) at high temperature following very rapid heating process. The increase in the absorbances during the flash pyrolysis of CdCP yielded the kinetics parameters in the range of 360-430 ℃ at 0.1 MPa Ar atmosphere: Ea=28.6 kJ/mol and In A= 17. The kinetics parameters of the exothermic decomposition reaction were also determined by using DSC method. The value of Ea determined by T-jump/FTIR spectroscopy is smaller than that by Kissinger method and Ozawa-Doyle method, which makes these values qualitatively consistent with other energetic materials. The T-jump/FTIR spectroscopy might be resembled as the surface of explosion reaction very closely. In addition, the decomposition kinetics of evolution of the major four individual gas products was also resolved by T-jump/FTIR spectroscopy, which might be essential for detailed combustion modeling of solid energetic materials. The Temperature-jump/FTIR (T-jump/FTIR) spectroscopy was introduced to resolve the decomposition kinetics parameters of [Cd(CHZ)3](ClO4)2 (CdCP) at high temperature following very rapid heating process. The increase in the absorbances during the flash pyrolysis of CdCP yielded the kinetics parameters in the range of 360-430 ℃ at 0.1 MPa Ar atmosphere: Ea=28.6 kJ/mol and In A= 17. The kinetics parameters of the exothermic decomposition reaction were also determined by using DSC method. The value of Ea determined by T-jump/FTIR spectroscopy is smaller than that by Kissinger method and Ozawa-Doyle method, which makes these values qualitatively consistent with other energetic materials. The T-jump/FTIR spectroscopy might be resembled as the surface of explosion reaction very closely. In addition, the decomposition kinetics of evolution of the major four individual gas products was also resolved by T-jump/FTIR spectroscopy, which might be essential for detailed combustion modeling of solid energetic materials.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2005年第12期1607-1610,共4页 中国化学(英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 20471008).
关键词 cadmium perchlorate CARBOHYDRAZIDE kinetics T-jump/FTIR flash pyrolysis cadmium perchlorate, carbohydrazide, kinetics, T-jump/FTIR, flash pyrolysis
  • 相关文献

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部