期刊文献+

基于多源数据的土地盐碱化遥感快速监测 被引量:11

Rapid Survey of Land Salinization Based on Multi-Source Remote Sensing Data
下载PDF
导出
摘要 通过分析干旱区土地盐碱化环境的地表景观特征和遥感信息特征,基于SPOT、ASTER多平台多波段遥感数据和DEM、土壤样品分析数据等多源数据,采用光谱角度制图(SAM)的遥感图像分类方法对实验区土地盐碱化程度进行了分级制图。该方法对常规数据的依赖性较小,适于西部干旱地区的土地盐碱化快速监测和评估。 In this paper, a classification method based on multi-source data is performed in order to survey the extent of land salinization rapidly. Firstly, the characters of land surface features and remote sensing information in arid area are analyzed. To extract information of salinization in effect, the multispectral image from SPOT and ASTER are used, besides DEM and lab data of soil samples. Finally, the quantified map of salinized soil grades achieved with Spectral Angle Mapper. The method is resultful for rapid assessment of land salinization, especially in remote arid area where conventional methods are restricted.
出处 《遥感信息》 CSCD 2005年第6期42-45,共4页 Remote Sensing Information
基金 中国科学院知识创新工程重要方向项目(KZCX3-SW-334):生态安全相关要素的定量遥感关键技术研究
关键词 遥感 土地盐碱化 干旱区 监测 分类 remote sensing land salinization soil salinization arid area classification
  • 相关文献

参考文献4

二级参考文献26

  • 1闫守邕,全刚,张前,肖春生,周艺,王世新.在GIS支持下的遥感影像分类、判读与制图系统[J].遥感信息,1995,17(1):7-14. 被引量:11
  • 2王绍庆.土壤和水体反射光谱特性及其应用[A].见:童庆禧等主编.中国典型地物波谱及其特征分析[C].北京:科学出版社,1990.611~618.
  • 3戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[A]..见遥感文选[C].北京:科学出版社,1981..
  • 4地质情报研究所.遥感专辑,第一辑[M].北京:地质出版社,1980..
  • 5Neville R A,Staenz K,Szeredi T,et al.Automatic Endmember Extraction From Hyperspectral Data For Mineral Exploration [A].The Four International Airborne Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing[C].Ottawa,Ontario,Canada,19
  • 6Jimenez-Rodriguez L O,Rivera-Medina J.Integration of Spatial and Spectral Information in Unsupervised Classification for Multispectral and Hyperspectral Data [J].Proc SPIE Image and Signal and Processing for Remote Sensing,1999,1:24~33.
  • 7Hu Y H,Lee H B,Scarpace F L.Optimal Linear Spectral Unmixing[J].IEEE Trans.Geosci.Remote Sensing,1999,37:639-644.
  • 8Winter M E.An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data [J].Proc SPIE Imaging Spectrometry,1999.266-275.
  • 9Gillis D,Palmadesso P,Bowles J.An Automatic Target Recongnition System for Hyperspectral Imagery Using Orasis[J].Proc SPIE,2001,4381:34-43.
  • 10Keshava N,Mustard J E.Spectral Unmixing[J].IEEE Signal Processing Magazine,2002,1 :44- 57.

共引文献126

同被引文献149

引证文献11

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部