期刊文献+

一种基于网格和密度凝聚点的快速聚类算法 被引量:14

A fast clustering algorithm based on grid and density condensation point
下载PDF
导出
摘要 提出的快速聚类算法通过凝聚点来准确反映数据空间的几何特征,然后采用网格和密度相结合的方法,利用爬山法和连通性原理进行聚类处理,克服了传统网格聚类算法聚类质量降低的缺点.实验结果证明,本算法的聚类效率优于传统爬山法、C lique算法和DBSCAN算法. A new kind of clustering algorithm called CGDCP is presented. The creativity of CGDCP is capturing the shape of data space by condensation points, and then using grid - based and density - based clustering methods based on the theories of a climbing hill algorithm and connectivity to deal with the data. CGDCP retains the good features of grid - based and density - based clustering methods and overcomes the traditional shortcomings of the grid - based clustering method's quality debasement resulting from little or no consideration of data distribution when partitioning the grids. Experimental results confirm that the execution efficiency of CGDCP is much better than a traditional climbing hill algorithm and the Clique algorithm.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第12期1654-1657,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60374031) 山东省自然科学基金资助项目(Y2002G18)
关键词 聚类 网格 密度 牛顿爬山法 凝聚点 clustering grid density climbing hill algorithm condensation point
  • 相关文献

参考文献10

  • 1NG R T, HAN J. Efficient and effective clustering methods for spatial data mining [ A ]. Proc of the 20th VLDB Conf [C]. Santiago: Morgan Kaufmann, 1994. 144-155.
  • 2ZHANG T. BIRCH: An efficient data clustering method for very large databases[ A]. Proc of the ACM S IGMOD Int' l Conf on Management of Data[ C]. Montreal: ACM Press, 1996. 73-84.
  • 3ESTER M. A density - based algorithm for discovering clusters in large spatial databases with noise [ A ]. Proc of 2nd Int' l Conf on Know ledge Discovering in Databases and Data Mining (KDD296) [C]. Portland: AAA I Press, 1996.
  • 4GUHA S. CURE: An efficient clustering algorithm for large databases [ A ]. Proc of the ACM S IGMOD Int' l Conf on Management of Data[ C ]. Seattle: ACM Press,1998. 73 - 84.
  • 5ZHANG W. ST IN G: A statistical information grid approach to spatial data mining[A]. Proc of the 23rd VLDB Conf[C]. Athens: Morgan Kaufmann, 1997. 186-195.
  • 6AGRAWAL R. Automatic subspace clustering of high dimensional data for data mining applications[ A]. Proc of the ACM SIGMOD Int' l Conf on Management of Data [C]. Seattle: ACM Press, 1998. 73-84.
  • 7马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108
  • 8SCKIKUTA E. Grid clustering: An efficient hierarchical clustering method for very large data sets[ A]. Proceedings of the 13th International Conference on Pattern Recognition[ C ]. [ s.l. ]: IEEE Computer Society Press, 1996. 101 - 105.
  • 9王鹏,曾振柄,谢千河.采用蚁群爬山法进行聚类分析的算法[J].计算机工程,2003,29(10):79-80. 被引量:13
  • 10毛卫英,谌明,贺贵明.随机技术在瞎子爬山法中的应用与实现[J].计算机工程与设计,2002,23(2):60-61. 被引量:7

二级参考文献15

  • 1史忠植.高级人工智能[M].北京:科学出版社,1999..
  • 2陈世福 陈兆乾 等.人工智能和知识工程[M].南京:南京大学出版社,1997..
  • 3Ester M,Kriegel H P,Sander J.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases.Proc. 1996 Int.Conf.on Knowledge Discovery and Data Mining(KDD'96).Porland,OR, 1996-08:226.
  • 4Ankerst M,Breuning M,Kriegel H P.OPT1CS:Ordering Points to Identify the Clustering Structure.Proc. of 1999 ACM-SIGMOD Int.Conf. on Management of Data(SIGMOD'99),Philadelphia,PA,1999-06:49.
  • 5Wang W, Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining.Proc. of 1997 Int. Conf. on Very Large Data Bases(VLDB'97),Athens,Greece, 1997-08:186.
  • 6Agrawal R, Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application.Proc. of 1998 ACM-S1GMOD Inc. on Conf. on Management of Data(S1GMOD'99),Seattle,WA, 1998-06:94.
  • 7Sheikholeslami G,Chatterjee S,Zhang A.WaveCIuster:A Multiresolution Clustering Approach for Very Large Spatial Database.Proc. of 1998 lnt.Conf, on Very Large Data Bases(VLDB'98),New York, 1998-08:428.
  • 8Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 9Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 10Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.

共引文献125

同被引文献100

引证文献14

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部