期刊文献+

非线性耦合统一混沌系统的同步 被引量:1

Nonlinearly Coupled Synchronization of Unified Chaotic Systems
下载PDF
导出
摘要 研究非线性耦合的两个统一混沌系统的同步问题.首先利用线性时变系统的稳定性理论,推出当两个统一混沌系统的误差系统渐近稳定时,耦合函数的参数选择范围,从而得出两个统一混沌系统全局渐近同步的充分条件.然后基于R ou th-Hurw itz稳定性判别方法,同样得出了混沌系统同步的一个充分条件.通过数值仿真发现,根据第1种方法选择的参数能使混沌系统全局渐近同步;而依据第2种方法选择的参数,即使误差系统系数矩阵的瞬间特征值具有负实部,也会出现混沌同步失去的情况,从而表明了该分析方法的有效性. The issue of the synchronization of two nonlinearly coupled unified chaotic systems is dealt with. A sufficient condition for synchronization is attained by using the criterion of the stability of time-varying systems. In addition, another sufficient condition for synchronization is obtained when the stability criterion of Routh-Hurwitz is employed. Compared with the two kinds of results, the synchronization state is stable by the first criterion when the range of the parameters in a vector coupling function is given. Unfortunately, the synchronization is sometimes loss when using the second criterion. Moreover, the analytic method is tested in coupled unified system, and the numerical results show the effectiveness of the theoretical analysis.
出处 《控制与决策》 EI CSCD 北大核心 2005年第12期1342-1345,共4页 Control and Decision
基金 国家自然科学基金项目(60174005) 江苏省自然科学基金项目(BK2001054)
关键词 统一混沌系统 非线性耦合同步 线性时变系统 Routh-Hurwitz Unified chaotic systems Nonlinearly coupled synchronization Time-varying systems Routh-Hurwitz
  • 相关文献

参考文献8

  • 1Pecora L M, Carroll T L. Sychronization in Chaotic Systems[J]. Physical Review Letters, 1990,64(4):821-824.
  • 2Wang C, Ge S S. Adaptive Synchronization of Uncertain Chaotic Systems via Backstepping Design[J]. Chaos, Solitions and Fractals, 2001,12(6):1199-1206.
  • 3Agiza H N, Yassen M T. Synchronization of Rossler and Chen Chaotic Dynamical Systems Using Active Control[J]. Physics Letters A, 2001,278(1):191-197.
  • 4Yassen M T. Chaos Synchronization Between Two Different Chaotic Systems Using Active Control[J]. Chaos, Solitions and Fractals, 2005,23(1):131-140.
  • 5Lu J H,Zhou T S, Zhou S C. Chaos Synchronization Between Two Different Chaotic Systems[J]. Chaos,Solitions and Fractals,2002,14(4): 529-541.
  • 6Park J H. Stability Criterion for Synchronilzation Linearly Coupled the Unified Chaotic Systems[J]. Chaos, Solitions and Fractals, 2005,23(1): 79-85.
  • 7Corron N J. Loss of Sychronization in Coupled Oscillators with Ubiquitous Local Stability[J]. Physical Review E, 2001,63(4):5203-5207.
  • 8Yanchuk S, Maistrenko Y, Mosekilde E. Loss of Synchrwonization in Coupled Rossler Systems[J]. Physics D, 2001,154(1):26-42.

同被引文献12

  • 1Lorenz.Deterministic non-periodic flow[J].J Atmos Sci, 1963,20: 130-141.
  • 2Pecora L M,Carroll T L.Synchronization in chaotic systems[J]. Phys Rev Lett,1990,64:821-824.
  • 3Shilnikov L P.Chua's circuit:rigorous results and future prob- lems[J].Int J Bif Chaos, 1997,7(3):665-669.
  • 4Stcfanski K.Modelling chaos and hyperchaos with 3-D maps[J]. Chaos, Solitons and Fractals, 1998,9: 83-93.
  • 5Grassi G,Miller D A.Theory and experimental realization of observer-based discrete-time hypercb_aos synchronization[J].IEEE Trans on Circ Syst 1,2002,49:373-378.
  • 6Chen S H,Lu J H.Synchronizing chaotic systems in striet-feedbaek form using a single controller[J].Phys Lett A,2002,299:353-358.
  • 7Chen S H, Ja H,Wang C P,et al.Adaptive synchronization of uncertain rtissler hyperehaotic system based on parameter idea- tification[J].Phys Lett A,2004,321:50-55.
  • 8Yu Y G,Zhang S C.Adaptive backstepping synchronization of uncertain chaotic system[J].Chaos, Solitons and Fractals, 2004, 21 : 643-649.
  • 9Hu M F, Xu Z Y,Zhang R, et al.Parameters identification and adaptive full state hybrid projective synchronization of chaotic (hyper-chaotic) systems[J].Phys Lett A,2007,361:231-237.
  • 10Xu D.Control of projective synchronization in chaotic systems[J]. Phys Rev E,2001,63.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部