期刊文献+

基于模糊逻辑的图像检索研究 被引量:1

On the Fuzzy Logic-based Image Retrieval
下载PDF
导出
摘要 提出一个基于模糊逻辑的图像检索系统.该系统使用模糊语言变量描述图像特征之间的相似性程度,而非图像特征本身,使得图像相似性推理能以非线性方式进行;模糊规则建立在用户对对象的认知基础之上,能够反映用户主观感知.由于具有相似特征变化范围的不同对象可以适用于相同的规则,使得算法对检索图像的不同类别具有良好的鲁棒性.另外,提出一种改进的直方图——平均面积直方图,以提取色彩特征.实验结果表明了模糊检索系统的有效性与可行性. A fuzzy logic-based image retrieval system is proposed. The fuzzy language variables are used to describe the similarity degree of image features, not the features themselves. Image similarity then can be deduced in a nonlinear manner. These rules embed user general perceptions of an object, by which subjectivity of human perception of image contents can be expressed. In particular, different objects with same feature variations can be dealt with same fuzzy rules. The fuzzy logic-based image retrieval system has a good robustness to image categories. Moreover, an improvement on the traditional histogram called the average area histogram (AAH) is proposed to represent color features. Experimental results show the feasibility and efficiency of the proposed scheme.
出处 《控制与决策》 EI CSCD 北大核心 2005年第12期1355-1359,1369,共6页 Control and Decision
基金 国家863计划项目(2002AA413420)
关键词 基于内容的图像检索技术 语义鸿沟 权重分配 模糊推理 色彩直方图 空间信息 Content-based image retrieval Semantic gap Weight assignment Fuzzy inference Color histogram Spatial information
  • 相关文献

参考文献11

  • 1Kulkarni S, Verma B. Fuzzy Logic Based Texture Queries for CBIR [A]. Proc of the 5th Int Conf on Computational Intelligence and Multimedia Applications[C]. Xi'an, 2003:223-228.
  • 2Banerjee M, Kundu M K. Content Based Image Retrieval with Fuzzy Geometrical Features [A]. Proc of the 12th IEEE Int Conf on Fuzzy Systems [C]. St. Louis, 2003,2:932-937.
  • 3Wu J K, Ang Y H, Lam P C, et al. Facial Image Retrieval, Identification, and Inference System [A]. Proc of the 1st ACM Int Conf on Multimedia[C]. Anaheim, 1993:47-55.
  • 4Pass G, Zabih R. Histogram Refinement for Content-based Image Retrieval[A]. Proc of the 3rd IEEE Workshop on Applications of Computer Vision[C]. Sarasota, 1996:96-102.
  • 5Colombo C, Del Bimbo A, Genovesi I. Interactive Image Retrieval by Color Distributions[A]. Proc of IEEE Int Conf on Multimedia Computing and Systems[C]. Texas, 1998:255-258.
  • 6Clinque L, Ciocca G, Levialdi S, et al. Color-based Image Retrieval Using Spatial-chromatic Histograms[J]. Image and Vision Computing, 2001, 19(13): 879-986.
  • 7Qian R J, Van Beek P J L, Sezan M I. Image Retrieval Using Blob Histograms[A]. IEEE Int Conf on Multimedia and Expo[C]. New York, 2000,1:125-128.
  • 8Lim S, Lu G. Spatial Statistics for Content Based Image Retrieval [A]. Proc of IEEE Int Conf on Information Technology: Computers and Communications[C]. Las Vegas, 2003:159-155.
  • 9Chan Y K, Chen C Y. Image Retrieval System Based on Color-complexity and Color-spatial Features[J]. J of Systems and Software, 2004,71(1-2):65-70.
  • 10曹莉华,柳伟,李国辉.基于多种主色调的图像检索算法研究与实现[J].计算机研究与发展,1999,36(1):96-100. 被引量:110

共引文献109

同被引文献10

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial Image matching[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Minneapolis, 2007: 1-8.
  • 3Vikas Sindhwani, Sathiya Keerthi S. Large scale semi-supervised linear SVMs[C]. Proc of the 29th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. Seattle, 2006: 477-484.
  • 4Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(12): 31-71.
  • 5Chen Y X, Wang J Z. Image categorization by learning and reasoning with regions[J]. J of Machine Learning Research, 2004, 5(8): 913-939.
  • 6Chen Y X, Bi J B, James Z Wang. MILES: Multiple- instance learning via embedded instance selection[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(12): 1931-1947.
  • 7Rouhollah Rahmani, Sally A Goldman. MISSL: multiple- instance semi-supervised learning [C]. Proc of the 23rd Int Conf on Machine Learning. Pittsburgh, 2006: 705-712.
  • 8Zhou Z H, Xu J M. On the relation between multi-instanee learning and semi-supervised learning[C]. Proc of the 24th ICML. Corvalis, 2007:1167-1174.
  • 9Wang C H, Zhang L, Zhang H J. Graph-based multiple- instance learning for object-based image retrieval[C]. Proc of the 1st ACM Int Conf on Multimedia Information Retrieval. Vancouver, 2008: 156-163.
  • 10胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649. 被引量:290

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部