期刊文献+

利用基本显露模式分类稀有类

下载PDF
导出
摘要 提出了一种新的稀有类分类方法,称作VeEPRC。该方法使用一种特殊的EP(基本显露模式,eEP)构造基于eEP的分类器,并对它们“装袋”,建立有效的组合分类器VeEPRC。在UCI机器学习数据库的基准数据集上的实验表明,VeEPRC不仅对稀有类具有较高的召回率和精度,而且具有较高的分类准确率。
作者 范明 刘艳霞
出处 《计算机应用》 CSCD 北大核心 2005年第B12期152-154,157,共4页 journal of Computer Applications
基金 河南省自然科学基金资助项目(0211050100)
  • 相关文献

参考文献14

  • 1KUBAT M, MATWIN S. Addressing the Curse of Imbalanced Training Sets: One - Sided Selection[ A]. Proceedings of the 14th International Conference on Machine Learning( ICML Morgan Kaufmann 1997) [ C]. 1997. 179 - 186.
  • 2AGARWAL R, JOSHI MV. PNrule: A new Framework for Learning Classifier Models in Data Mining( A Case-Study in Network Intrusion Detection) [ A]. Proceedings of the First SIAM Conference on Data Mining[ C]. Chicago, USA, 2001.
  • 3ALHAMMADY H, RAMAMOHANARAO K. The Application of Emerging Patterns for Improving the Quality of Rare-class Classification[ A]. Proceedings of the 8th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining(PAKDD2004)[ C]. Sydney, Australia, 2004. 207 - 211.
  • 4JOSHI MV, AGARWAL RC, KUMAR V. Predicting Rare Classes:Comparing Two-Phase Rule Induction to Cost - Sensitive Boosting[ A]. Proceedings of the sixth European Conference on Principles and Practice of Knowledge Discovery in Databases(PKDD2002) [ C].Helsinki, Finland, 2002.
  • 5JOSHI MV, AGARWAL RC, KUMAR V. Predicting Rare Classes:Can Boosting Make Any Weak Learner Strong? [ A] Proceedings of the Eighth ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD2002) [ C]. Edmonton, Canada, 2002.
  • 6范明,刘孟旭,赵红领.一种基于基本显露模式的分类算法[J].计算机科学,2004,31(11):211-214. 被引量:11
  • 7JOSHI MV. On Evaluating Performance of Classifiers for Rare Classes[ A]. Proceedings of the Second IEEE International Conference on Data Mining(ICDM2002) [ C]. Maebishi, Japan, 2002.
  • 8范明 魏芳.挖掘基本显露模式用于分类[J].计算机科学,2004,31:207-309.
  • 9BLAKE C, MERZ C. UCI repository of machine learning databases[ DB/OL]. http://www, ics. uci. edu/~ mlearn/ MLRepository. html, 1998.
  • 10BREIMAN L. Bagging Predictors[ J]. Machine Learning, 1996, 24(2) : 123 - 140.

二级参考文献10

  • 1Blake C, Merz C. UCI repository of machine learning databases.1998 [http://www. ics. uci. edu/- mlearn/ MLRepository.html]. Irvine,CA: University of California,Department of Information and Computer Science
  • 2Dong G,Li J. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. of KDD′99, San Diego, USA,Sept. 1999.15-18
  • 3Dong G,Zhang X,Wong L,Li J. CAEP: Classification by Aggregating emerging patterns. In:Proc. of the 2nd Int′l Conf. On Discovery Science (DS′99) ,Tokyo,Japan,Dec. 1999.30-42
  • 4Fan H,Ramamohanarao K. Bayesian Approach to use Emerging Patterns for Classification. In:Proc of 14th Australasian Database Conf. Feb. 2003. 39-48
  • 5Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation. In:Proc. of the 2000 ACM-SIGMOD Intl. Conf. on Management of Data, May 2000. 1-2
  • 6Li J,Dong G, Ramamohanarao K. JEP-Classifier: Classification by Aggregating Jumping Emerging Patters. Knowledge and Information Systems, 2001,3(2): 131-145
  • 7Li J,Dong G. Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. In:Pro. of 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD′00) ,2000. 220-223
  • 8Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In:ICDM′01,San Jose,CA,Nov. 2001. 369-376
  • 9Lin B, Hsu W, Ma Y. Integrating classification and association rule mining. In:KDD′98,New York,NY,Aug. 1998. 80-86
  • 10Zheng Z, Webb G I. Lazy learning of Bayesian rules. Machine Learing, 41:53-84

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部