期刊文献+

时滞的周期神经网络模型周期解的存在性 被引量:1

The existence of periodic solution of the periodic neural network with time-delay
下载PDF
导出
摘要 研究具有离散时滞和分布时滞的周期神经网络模型的动力学.利用M aw h in连续定理以及拓扑度理论,证明了在一定条件下该周期神经网络系统周期解的存在性. This paper studies on dynamics of the periodic neural network with discrete and distributed time-delay. Under some conditions, by using Mawhin continuity theorem and degree theory, the existence of the periodic solution of the periodic neural network is proved.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2005年第4期12-15,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10171088) 江苏省教育厅自然科学基金资助项目(05KJB110154)
关键词 时滞 神经网络 周期解 存在性 time delay neural network periodic solution existence
  • 相关文献

参考文献11

  • 1ARIK S. Stability analysis of delayed neural networks[J]. IEEE Trans Cir & Sys-I , 2000, 47(7):1089-1092.
  • 2BALDI P, ATIYA A F. How delays affect neural dynamics and learning [J]. IEEE Trans Neu Networks, 1994,5(4):612-621.
  • 3HALE J K. The theory of functional differential equations [M]. New York: Springer Verlag, 1997.
  • 4CAO J, WANG J. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays[J]. Neu Networks, 2004, 17(3):379-390.
  • 5CAO J, WANG J. Global asymptotic stability of a general class of recurrent neural networks with time-varying delays[J]. IEEE Trans Cir & Sys-I , 2003, 50(1):34-44.
  • 6CHEN B, WANG J. Global exponential periodicity and global exponential stability of a class of recurrent neural networks [J]. Phys Let A, 2004, 329(1-2): 36-48.
  • 7CHUA L O, YANG L. Cellular neural networks, theory [J]. IEEE Trans Cir & Sys, 1988, 35(10): 1257-1272.
  • 8CAO J. On the exponential stability and periodic solution of CNNs with delays [J]. Phys Let A, 2000, 267(5-6):312-318.
  • 9CAO J. Periodic solution and exponential stability of delayed CNNs [J]. Phys Let A, 2000, 270(3-4):157-163.
  • 10ZHOU J, LIU Z, CHEN G. Dynamics of periodic delayed neural networks [J]. Neu Networks, 2004, 17(1):87-101.

同被引文献9

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2GAINES R E, MAWHIN J L. Coincidence degree and nonlinear differential equations [-M]//Lecture Notes in Mathematics. Berlin: Springer, 1977: 26-43.
  • 3WANG Genqiang, CHENG Suisun. A priori bounds for periodic solutions of a delay Rayleigh equation [J]. Appl Math Lett, 1999, 12(1): 41-44.
  • 4GE Weigao. On the existence of periodic solutions for a kind of Li6nard equation with a deviating argument [J]. J Math Anal Appl, 2004, 289(1): 241-243.
  • 5CHEN Yuehong, WANG Genqiang. Periodic solutions of nonautonomous delay Duffing equations with a com- plex deviating argument [J]. Far East J Appl Math, 2007, 26(2): 159-170.
  • 6LI Jingwen, WANG Genqiang. Sharp inequalities for periodic functions [J]. Appl Math E-Notes, 2005, 5(1): 75-83.
  • 7WANG Zhengxin, QIAN Longxia, LU Shiping, et al. The existence and uniqueness of periodic solutions for a kind of Duffing-type equation with two deviating arguments CJ]. Nonlinear Anal: Theory, Methods Appl, 2010, 73(9): 3034-3043.
  • 8CHEN Yuehong, LIN Weiwei. Existence of periodic solutions of iterative differential equations with deviating arguments CJ}. Far East J Math Sei, 2011, 50(1) .- 95-104.
  • 9李鹏程.一类Duffing型时滞微分方程的周期解[J].四川大学学报(自然科学版),2003,40(2):195-198. 被引量:15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部