期刊文献+

退化的高阶差分方程周期解的存在性

The existence of periodic solution of degenerate high order difference equation
下载PDF
导出
摘要 利用傅立叶级数理论,探讨了退化的高阶差分方程EX(k)=A1X(k-1)+A2X(k-2)+…+AnX(k-n)周期解存在的充要条件,给出了二维退化的二阶差分方程周期解存在的代数判别方法,并通过实例说明其应用. This paper discusses the existence of periodic solution of degenerate high order difference equation EX(k)=A1X(k-1)+A2X(k-2)+…+AnX(k-n), and gives the algebraic method to judge the existence of periodic solution of two-dimensional degenerate two-order difference equation. An example is finally given to illustrate the main results of this paper.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2005年第4期16-19,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10371106) 江苏省教育厅指导性计划资助项目(FK0310060)
关键词 退化 高阶差分方程 周期解 傅立叶级数理论 degenerate high order difference equation periodic solution Fourier series theory
  • 相关文献

参考文献8

二级参考文献31

  • 1蒋威,郑祖庥.退化时滞差分系统的通解[J].数学研究,1998,31(1):44-50. 被引量:12
  • 2张玉珠,燕居让.具有连续变量的差分方程振动性的判据[J].数学学报(中文版),1995,38(3):406-411. 被引量:75
  • 3[1]Hale J K. Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
  • 4[2]Hale J K, Lunel S M V. Introduction to Functional Differential Equations[M]. Springer-Verlag, New York, 1993.
  • 5[3]Kaplan J L, Yorke J A. Ordinary differential equations which yield periodic solution of delay equations[J]. J Math Anal Appl, 1974,48:314-324.
  • 6[4]Nussbaum R D. Periodic solutions of some nonlinear autonomous functional differential equations[J]. J Diff Eqns, 1973, 14: 360-394.
  • 7[5]LI Ji-bin, HE xue-zhong. Multiple periodic solutions of differential delay equations created by asymptotically Hamiltonian systems[J]. Nonl Anal T M A, 1998, 31(1/2):45-54.
  • 8[6]GUO Zhi-ming, XU Yuan-tong, LIN Zhuang-peng. A new Zp index theory and its applications[A]. Peter W. Bates, Kening Lu & Daoyi Xu Proceedings of the International Conference on Differential Equations and Computational Simulations[C]. World Scientific Pub Co, Singapore, 2000. 111-114.
  • 9[7]XU Yuan-tong, GUO Zhi-ming. Applications of a Zp index theory to periodic solutions for a class of functional differential equations[J]. J Math Anal Appl, 2001, 257(1): 189-205.
  • 10[8]Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications[J]. J Func Anal, 1973,14:349-381.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部