期刊文献+

导航星座自主导航的时间同步技术 被引量:33

Time Synchronization Techniques of the Autonomous Navigation of Navigation Constellation
下载PDF
导出
摘要 导航星座自主导航能够有效地减少地面测控站的布设数量,减少地面站至卫星的信息注入次数,降低系统维持费用,实时监测导航信息的完好性,增强系统的生存能力。卫星时间同步是实现导航星座自主导航的关键技术之一,而星载原子时钟的频率稳定性能直接影响着卫星时间同步精度。本文基于星载原子时钟频率稳定性的Allan方差表达,建立系统状态方程,并以星间双向测量伪距差作为基本观测量,组成系统测量方程。从而,可以设计适用于导航星座卫星时间同步的Kalman滤波算法。系统仿真结果表明:通过滤波处理星间双向测距数据,不断地更新卫星时钟参数,能够实现星座卫星自主高精度时间同步。 By using the autonomous navigation techniques of navigation constellation, the number of the ground control stations, the injecting message frequency from the ground stations to satellites and system maintenance cost may be reduced significantly. Meanwhile, the integrity of navigation messages can be monitored real-time and the survivability of the navigation system also enhanced. The inter-satellite time synchronization is one of key techifiques to implement the autonomous navigation, while the stability of on-board atomic clocks' frequency would impact directly on the accuracy of the time synchronization. Generally, the stability of the atomic clocks' frequency was expressed quantificationally with Allan variance, and then the system state equations of the clocks established. Moreover, using the pseudorange differences between two satellites as the basic measurements, the measurement equations were gotten. Therefore, the Kalman filtering algorithm applied to inter-satellite time synchronization was designed easily. Finally, it is clearly shown from the simulated results that the autonomous time synchronization among the constellation satellites can be implemented highly-accurately by processing the inter-satellite measurement data with the on-board Kalman filters and updating continually the clock parameters of the satellites.
作者 帅平 曲广吉
出处 《宇航学报》 EI CAS CSCD 北大核心 2005年第6期768-772,共5页 Journal of Astronautics
关键词 导航星座 自丰时间同步 星间测距与通信 KALMAN滤波 系统仿真 Navigation constellation Autonomous time synchronization Inter-satellite ranging and communication Kalman filtering System simulation
  • 相关文献

参考文献7

  • 1Ananda M P, Bernstein H, et al. Global positioning system (GPS) autononaous navigation[A]. ha Proceedings of IEEE Position, laocation and Navigation Symposium, Las Vegas, Nevada[C]. March 20-23, 1990:497-508.
  • 2Kiser K, Vaughan S H. GPS Ⅱ R Joins the GPS constellation [A].In Proceedings of the 11^th International Teehnology Meeting of the Satellite Division of the Institute of Navigation, Nashville, Tennessee[C].Sept. 15- 18, 1998: 1915- 1923.
  • 3Fontana R D, Cheung W, Stansell T. The modernized L2 civil signat: leaping forward in the 21^st century [J]. GPS world, Sept.2001 : 28 - 34.
  • 4Parkinson B W, Spilker J J. Global Positioning System: Theory and Applications ( Vol. Ⅰ ) [M]. Published by the American Institute of Aeronautics and Astronautics, Inc., Washington, DC, 1996: 149-159.
  • 5Mattoccia D, Bemstein H, et al. GPS satellite timing performance using the autonomous navigation (autonav)[A]. In Proceedings of the 11^th International Technology Meeting of the Satellite Division of the Institute of Navigation[C]. Nashville, Tennessee, Sept. 15 -18, 1998: 1705-1712.
  • 6Brown R G, Hwang P Y C. Introduction to Random Signals and Applied Kalman Fihering[M]. Published by John Wiley & Sons, Inc.,New York, 1997:d-19-d60.
  • 7Menn M D, Bemstein H. Ephemeris observability issues in the global positioning system (GPS) autonomous navigation (autonav) [A]. In Proceedings of IEEE Position, Location and Navigation Symposium,Las Vegas, Nevada[C].April 20 - 23, 1994:677 - 680.

同被引文献263

引证文献33

二级引证文献249

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部