期刊文献+

图像多尺度秩和统计间隙的模糊边缘检测模型 被引量:2

A Multi-Scale Images Edge Detection Model Based on Gap Statistic of Order Wilcoxon Rank Sum
下载PDF
导出
摘要 基于“Gap统计”理论思想,在概念“Wilcoxon秩和统计量”基础上提出了顺序秩和统计量、顺序秩和间隙以及边缘隶属度的概念,以相对半邻域之间图像灰度分布的顺序秩和差别为依据,建立了基于顺序秩和统计间隙的多尺度图像模糊边缘检测模型,分析了模型与Prewitt算子的关系·通过图像的边缘检测实例对模型进行了验证,比较了不同尺度下边缘检测的差别,验证并分析了噪声对边缘影响依尺度的关系·该模型具有多尺度、区域内部抗噪能力与尺度有关、噪声弱化弱边缘以及边缘具有隶属度、图像的边缘检测结果与尺度有关等特点,反映了边缘与纹理依尺度的关系· On the basis of the order Wilcoxon rank sum statistics in relative half-neighborhood of image pixels, concepts called order Wilcoxon rank sum statistics, statistic gap of order Wilcoxon rank sum, and membership degree of an image edge are proposed. Based on the gap statistic of order Wilcoxon rank sum, a multi-scale images edge detection model is established. Because the proposed model has the property of multi-scale, the excellent anti-noise in the interior of the region, and the noise weakening faintish edge, the corresponding algorithm has good performance in image edge detection. The difference of edge detection between the model and Prewitt operator is analyzed. Lots of experimental examples verify the capacity of the model. Finally, an investigation is taken to compare the difference of edge detection under the circumstance of different scales.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第12期2111-2117,共7页 Journal of Computer Research and Development
基金 高等学校博士学科点专项科研基金项目(20020288024)~~
关键词 图像处理 边缘检测 GAP统计 多尺度 隶属度 image processing edge detection gap statistic multi-scale membership degree
  • 相关文献

参考文献9

  • 1R. Lanari, G. Fornaro, D. Riccio, et al. Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: The Etna case study. IEEE Trans. Geoscience and Remote Sensing, 1996, 34(5): 1097-1115.
  • 2Jong-Sen Lee, K. P. Papathanassiou, T. L. Ainsworth, et al.A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geoscience and Remote Sensing, 1998, 36(5): 1456-1465.
  • 3L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithm. In: Proc. 11th Annual Int'l Conf.Center for Nonlinear Studies on Experimental Mathematics. Los Alamos: Elsevier Science Publishers, 1992. 259-268.
  • 4Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution equations. Boston: America Mathematical Society,2001.
  • 5W.H. Richardson. Bayesian-based iterative method of image restoration. Journal of Optical Society of America, 1972, 62(1):55-59.
  • 6G. Cross, A. Jain. Markov random field textural models. IEEE Trans. Pattern Analysis and Machine Intelligence, 1983, 5 ( 1 ):25-39.
  • 7肖亮,吴慧中,韦志辉,汤淑春.图像分割中分段光滑Mumford-Shah模型的水平集算法[J].计算机研究与发展,2004,41(1):129-135. 被引量:22
  • 8王元全,汤敏,王平安,夏德深,徐晔.Snake模型与深度凹陷区域的分割[J].计算机研究与发展,2005,42(7):1179-1184. 被引量:16
  • 9R. Tibshirani, G. Walther, T. Hastie. Estimating the number of clusters in a dataset via the gap statistic. Stanford University,Tech. Rep: SN(2000) JRSSB, 2000.

二级参考文献25

  • 1[1]M Kass, A Witkin, D Terzopoulous. Snake: Active contour models. In: Brady I M, Rosenfield A eds. Proc of the 1st Int'l Conf on Computer Vision. London: IEEE Computer Society Press, 1987. 259~263
  • 2[3]D Mumford, J Shah. Boundary detection by minimizing functions. The Conf on Computer Vision and Pattern Recognition, San Francisco, 1985
  • 3[4]De Giorgi, D Carriero, A Leac. Existence theorem for a minimum problem with free discontinuity set. Archive for Rational Mechanics and Analysis, 1989, 108(3): 195~218
  • 4[5]D Mumford, J Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 1989, 42(5): 577~685
  • 5[6]Gobbino. Finite difference approximation of the Mumford-Shah functional. Communication Pure Applied Mathematics, 1998, 51(2): 197~228
  • 6[7]L Ambrosio, V Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via-convergence. Communication on Pure and Applied Mathematics, 1990, 43(8): 999~1036
  • 7[8]L Ambrosio, V Tortorelli. On the approximation of free discontinuity problems. Bollettino Della Unione Matematica Inaliana, 1992, 7(6-B): 105~123
  • 8[9]T Chan, L Vese. Active contour without edges. IEEE Trans on Image Processing, 2001, 10(2): 266~277
  • 9[10]T Chan, L Vese. Active contour without edges for vector-valued image. Journal of Visual Communication and Image Representation, 2001, 11: 130~141
  • 10[11]S Osher, J Sethian. Fronts propagation with curvature dependent speed: Algorithm based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1998, 79(1): 12~49

共引文献36

同被引文献17

  • 1刘鹏,张岩,毛志刚.一种基于模糊函数的自适应平滑约束图像复原算法[J].中国图象图形学报,2005,10(9):1178-1183. 被引量:7
  • 2郎文辉,冯焕清,周荷琴,诸葛斌.基于局部特征的体切片自适应重建[J].计算机辅助设计与图形学学报,2005,17(11):2441-2446. 被引量:2
  • 3李奇,冯华君,徐之海.用于全数字对焦的点扩散函数性能分析与评价[J].浙江大学学报(工学版),2006,40(6):1093-1096. 被引量:6
  • 4曹万苍.特殊函数图形的MATLAB绘制[J].赤峰学院学报(自然科学版),2007,23(1):13-14. 被引量:2
  • 5邓鲁华擞字图像处理[M].北京:机械工业出版社,2005.
  • 6Nagy J G,Plemmons R J.Iterative image restoration using approximate inverse preconditioning[J].IEEE Transactions on Image Processing, 1996,7(5): 1151-1162.
  • 7Nagy J G,Palmer K.Iterative methods for image deblurring:a Matlab object-oriented approach[J],Numerical Algorithms,2004,11(36): 73-93.
  • 8Lagendijk R L,Biemond J.Regnlarized iterative image restoration with ringing reduction[J].IEEE Transaction on Acoustics,Speech, and Signal Processing, 1988,36:1874-1888.
  • 9van Kempen G M P,van Vliet L J.The influence of the regularization parameter and the first estimate on the performance of Tikhonov regularized non-linear image estoration algorithms[J].Journal of Microscopy, 2000,4( 198 ) : 63-75.
  • 10Richardson W H. Bayesian-based Iterative Method of Image Restoration[J]. Journal of Optical Society of America, 1972, 62(1):55-59.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部