期刊文献+

相似尺度图像融合算法 被引量:1

Image Fusion at Similar Scale
下载PDF
导出
摘要 提出了一种新的融合思想,即图像应在相似尺度(si milar scale,SS)上进行融合·当融合低分辨率多光谱图像与高分辨率全色图像时,一般的方法没有考虑到插值的多光谱图像和高分辨率的全色图像的尺度不一致性·基于相似尺度的思想,图像融合算法如下·首先,使用“劋trous”离散小波变换分解高分辨率全色图像,使其低通分量与插值后的多光谱图像具有相似的尺度·然后,用加权多尺度基本形式(weighted mutlitscale fundamental form,WMFF)来融合它们得到合成的最低频带·最后,“劋trous”逆小波变换用来重建高分辨率的多光谱图像·与其他的基于小波变换的图像融合算法相比,基于相似尺度的融合方法取得了更好的融合结果· An novel idea that image fusion should be performed at similar scale is proposed. Based on the idea “similar scale”, an image fusion algorithm is presented. At first, the “à trous” discrete wavelet transform is used to decompose the panchromatic image so that its approximation and the interpolated muhispectral image have the similar scale. Secondly, image fusion based on weighted muhiscale fundamental form (WMFF) is performed on them to obtain the synthesized approximation. Finally, the inverse “à trous” wavelet transform of the synthesized approximation and the detail of the panchromatic image reconstructs a high spatial resolution multispectral image. Compared with other wavelet-based techniques in the literature, the proposed image fusion algorithm has better performance.
出处 《计算机研究与发展》 EI CSCD 北大核心 2005年第12期2126-2131,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60272042 10171007)~~
关键词 图像融合 相似尺度 加权多尺度基本形式 小波变换 image fusion similar scale weighted multiscale fundamental form wavelet transform
  • 相关文献

参考文献14

  • 1C. Pohl, J. L. Genderen. Multisensor image fusion in remote sensing: Concepts, methods and application. Int'l Journal of Remote Sensing, 1998, 19(5): 823-854.
  • 2A. Mohammad-Djafari. Bayesian approach for data and image fusion. Int'l Workshop on Bayesian and Maximum Entropy Methods, Idaho, USA, 2002.
  • 3Z. Zhang, R. S. Blum. A categorization of multiscaledecomposition-based image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE,1999, 87(8): 1315-1326.
  • 4R.K. Sharama. Probabilistic model-based multisensor image fusion: [ Ph. D. dissertation ] . Portland: Oregon Graduate Institute, 1999.
  • 5D.A. Socolinsky, L. B. Wolff. Multispectral image visualization through first-order fusion. IEEE Trans. Image Processing, 2002,11(8): 923-931.
  • 6Z.L. Zhang, S. H. Sun, F. C. Zheng. Image fusion based on median filters and SOFM neural networks: A three-step scheme.Signal Processing, 2001, 81(6): 1325- 1330.
  • 7H. Li, B. S. Manjunath, S. K. Mitra. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235-245.
  • 8J. Nufez, X. Otazu, O. Fors, et al. Multiresolution based image fusion with additive wavelet decomposition. IEEE Trans. Geosci.Rem. Sensing, 1999, 37(3): 1204-1211.
  • 9P. Scheunders. A multivalued image wavelet representation based on multiscale fundamental forms. IEEE Trans. Image Processing,2002, 11(5): 568-575.
  • 10S. Di Zeno. A note on the gradient of a multi-image. Comput.Vis. Graph. Image Processing, 1986, 33(1): 116-125.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部