期刊文献+

广义粒子群优化模型 被引量:102

General Particle Swarm Optimization Model
下载PDF
导出
摘要 粒子群优化算法提出至今一直未能有效解决的离散及组合优化问题.针对这个问题,文中首先回顾了粒子群优化算法在整数规划问题的应用以及该算法的二进制离散优化模型,并分析了其缺陷.然后,基于传统算法的速度-位移更新操作,在分析粒子群优化机理的基础上提出了广义粒子群优化模型(GPSO),使其适用于解决离散及组合优化问题.GPSO模型本质仍然符合粒子群优化机理,但是其粒子更新策略既可根据优化问题的特点设计,也可实现与已有方法的融合.该文以旅行商问题(TSP)为例,针对遗传算法(GA)解决该问题的成功经验,使用遗传操作作为GPSO模型中的更新算子,进一步提出基于遗传操作的粒子群优化模型,并以Inver over算子作为模型中具体的遗传操作设计了基于GPSO模型的TSP算法.与采用相同遗传操作的GA比较,基于GPSO模型的算法解的质量与收敛稳定性提高,同时计算费用显著降低. Particle swarm optimization (PSO) is generic heuristic algorithm based on swarm intelligence. It has been applied to many practical continuous optimization problems. However, due to the limitation of its velocity-displacement search model, it could not be extended to solve discrete and combinatorial optimization problems effectively. To solve this problem, this paper first reviews the applications of PSO algorithm in integer programming problems and its binary version discrete model, in which their corresponding limitations are analyzed. Then based on traditional velocity-displacement operator, mechanism of PSO algorithm is studied and general particle swarm optimization (GPSO) model is proposed. Thus, PSO algorithm developed on this general model can be naturally extended to solve discrete and combinatorial optimization problems. GPSO model is still based on PSO mechanism, but the updating operator could integrate with other solutions such as GA, simulated annealing and taboo search easily. Travel salesman problem (TSP) is used to demonstrate this extension. In view of the success of GA in this problem, this paper uses genetic operator as the updating operator in GPSO model and further proposes genetic operator based PSO model, and selects Inver over operator as the genetic operator in this model. Finally the corresponding PSO algorithm for TSP is presented. In contrast to the GA with the same genetic operator, GPSO based algorithm converges consistently with better TSP solutions and saves computational cost significantly.
出处 《计算机学报》 EI CSCD 北大核心 2005年第12期1980-1987,共8页 Chinese Journal of Computers
基金 国家自然科学基金(50305008)资助
关键词 广义粒子群优化模型 旅行商问题 Inver over算子 general particle swarm optimization model travel salesman problem Inver over operator
  • 相关文献

参考文献10

  • 1Bergh F.,Engelbrecht A.P..Training product unit networks using cooperative particle swarm optimizers.In:Proceedings of International Joint Conference on Neural Networks,Washington,2001,1:126~131
  • 2Yoshida H.,Kawata K.,Yoshikazu F..A Particle swarm optimization for reactive power and voltage control considering voltage security assessment.IEEE Transactions on Power System,2000,15(4):1232~1239
  • 3Gao L.,Gao H.B..Particle swarm optimization based algorithm for cutting parameters selection.In:Proceedings of IEEE World Congress on Intelligent Control and Automation,Hangzhou,2004,4 :2847~ 2851
  • 4Parsopoulos K.E.,Vrahatis M.N..Recent approaches to global optimization problems through particle swarm optimiza tion.Natural Computing,2002,12(1):235~306
  • 5Salman A.,Ahmad I..Particle swarm optimization for task assignment problem.Microprocessors and Microsystems,2002,26(8):363~371
  • 6Kennedy J.,Eberhart R.C..A discrete binary version of the particle swarm algorithm.In:Proceedings of IEEE Conference on Systems,Man,and Cybernetics,Orlando,1997,5:4104~4108
  • 7Kennedy J.,Eberhart R.C..Particle swarm optimization.In:Proceedings of IEEE International Conference on Neutral Net works,Australia,1995,4:1942~1948
  • 8Shi Y.H.,Eberhart R.C..A modified particle swarm optimizer.In:Proceedings of IEEE Conference on Evolutionary Computation,Anchorage,1998,69~73
  • 9Wright A..Genetic Algorithms for Real Parameter Optimization-Foundations of Genetic Algorithms.San Mateo:Morgan Kaufmann Publishers,1991
  • 10Michalewicz Z.et al..How to Solve It:Modern Heuristics.Berlin:Springer-Verlag,2000

同被引文献959

引证文献102

二级引证文献927

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部