期刊文献+

基于数据分区的最近邻优先聚类算法 被引量:4

A Data-Partitioning-Based Nearest-Neighbors-First Clustering Algorithm
下载PDF
导出
摘要 聚类是数据挖掘领域的一个重要研究方向。最近邻优先吸收(NNAF)算法可以快速进行聚类并且能有效处理噪声点,但当数据密度和聚类间的距离不均匀时聚类质量较差。本文在分析NNAF算法不足的基础上,提出了一种基于数据分区的NNAF 算法-PNNAF 算法,较好地改善了聚类质量。 Clustering is an important research direction in the field of Data Mining. This paper analyses the Nearest Neighbors Absorbed First (NNAF) clustering algorithm. This algorithm can cluster quickly with noisy . However, clustering quality will degrade when the cluster density and distance between clusters are not even. In this paper,a Nearest-Neighbors-First clustering algorithm based on data partitioning is proposed. The new algorithm improves the quality of clustering.
出处 《计算机科学》 CSCD 北大核心 2005年第12期188-190,共3页 Computer Science
关键词 数据挖掘 聚类 数据分区 最近邻优先吸收 Data Mining, Clustering, Data partitioning, Nearest neighbor first
  • 相关文献

参考文献8

  • 1Han Jiawei,Kamber M.Data Mining :Concepts and Techniques [C],Mongan Kaufmann publishers,2000.225-278.
  • 2Kanfan L,Rousseeuw P J.Finding groups in data:an introduction to cluster analysis [M].New York:John Wiley&Sons,1990.
  • 3Zhang T,et al.BIRCH:An efficient data clustering method for very large databases.In:Proc.of the ACM SIGMOD Int'1.Conf.on Management ent of Data.Montreal:ACM Press,1996.73-84.
  • 4Guha S,Rastogi R,Shim K.CURE; An efficient clustering algorithm for large databases.In:Proc.of the ACM SIGMOD Int'1.Conf.on Management ent of Data.Seattle:ACM Press,1998.73-84.
  • 5Enter M,et al.A density-based algorithm for discovering clustersin large spatial databases with noise:In:Proc.of 2nd Int'1. Conf on Knowledge Discovering in Databases and Data Mining KDD96).Portland:AAAI Press.1996.
  • 6Zhang W,et al.STING:A atatistical information grid approach to spatial data mining.In:Proc.of the 23rd VLDB Conference.A thens:Morgan Kanfmann,1997.186-195.
  • 7Zhou Shuigeng,et al.A fast density- based clustering algorithm (in Chinese).Department of Computer Science,Fudan University:[TechRep:1999011].1999.
  • 8Vitter J.Random sampling with reservoir.ACM Trans on Math ematical Software,1985,11( 1):37-57.

同被引文献24

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部